1,358
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

β‑aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs

, , &
Pages 14382-14401 | Received 11 Apr 2022, Accepted 31 May 2022, Published online: 24 Jan 2023

References

  • Travieso-Gonzalez A, Núñez-Gil IJ, Riha H, et al. Management of arterial hypertension: 2018 ACC/AHA versus ESC guidelines and perioperative implications. J Cardiothorac Vasc Anesth. 2019;33(12):3496–3503.
  • Ye C, Zheng F, Wu N, et al. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin. 2022. DOI:10.1038/s41401-021-00846-7
  • Sekar D, Shilpa BR, Das AJ. Relevance of microRNA 21 in different types of hypertension. Curr Hypertens Rep. 2017;19(7):57.
  • Zhang JR, Sun HJ. Extracellular vesicle-mediated vascular cell communications in hypertension: mechanism insights and therapeutic potential of ncRNAs. Cardiovasc Drugs Ther. 2022;36(1):157–172.
  • Bei Y, Das S, Rodosthenous RS, et al. Extracellular vesicles in cardiovascular theranostics. Theranostics. 2017;7(17):4168–4182.
  • Zhang JR, Sun HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Molecular Biology Reports. 2020;47(7):5535–5547.
  • Zhang C, Niu K, Lian P, et al. Pathological bases and clinical application of long noncoding RNAs in cardiovascular diseases. Hypertension (Dallas, Tex.: 1979). 2021;78(1):16–29.
  • Ren XS, Tong Y, Qiu Y, et al. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles. 2020;9(1):1698795.
  • Tong Y, Ye C, Ren XS, et al. Exosome-mediated transfer of ACE (Angiotensin-Converting Enzyme) from adventitial fibroblasts of spontaneously hypertensive rats promotes vascular smooth muscle cell migration. Hypertension (Dallas, Tex.: 1979). 2018;72(4):881–888.
  • Ling L, Chen D, Tong Y, et al. Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. J Hypertens. 2018;36(5):1104–1114.
  • Brown PA. Differential and targeted vesiculation: pathologic cellular responses to elevated arterial pressure. Mol Cell Biochem. 2022;477(4):1023–1040.
  • Wang S, Li P, Jiang G, et al. Long non-coding RNA LOC285194 inhibits proliferation and migration but promoted apoptosis in vascular smooth muscle cells via targeting miR-211/PUMA and TGF-β1/S100A4 signal. Bioengineered. 2020;11(1):718–728.
  • Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res. 2021;44(2):129–146.
  • Jiang X, Ning Q. Long noncoding RNAs as novel players in the pathogenesis of hypertension. Hypertens Res. 2020;43(7):597–608.
  • Cheng Q, Zhang M, Zhang M, et al. Long non-coding RNA LOC285194 regulates vascular smooth muscle cell apoptosis in atherosclerosis. Bioengineered. 2020;11(1):53–60.
  • Tanianskii DA, Jarzebska N, Birkenfeld AL, et al. Beta-aminoisobutyric acid as a novel regulator of carbohydrate and lipid metabolism. Nutrients. 2019;11(3):524.
  • Jung TW, Hwang HJ, Hong HC, et al. BAIBA attenuates insulin resistance and inflammation induced by palmitate or a high fat diet via an AMPK-PPARδ-dependent pathway in mice. Diabetologia. 2015;58(9):2096–2105.
  • Jung TW, Park HS, Choi GH, et al. β-aminoisobutyric acid attenuates LPS-induced inflammation and insulin resistance in adipocytes through AMPK-mediated pathway. J Biomed Sci. 2018;25(1):27.
  • Lee W, Yun S, Choi GH, et al. BAIBA attenuates the expression of inflammatory cytokines and attachment molecules and ER stress in HUVECs and THP-1 cells. Pathobiol: J Immunol Cell Biol. 2018;85(5–6):280–288.
  • Wang H, Qian J, Zhao X, et al. β-Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis. J Pharmacol Sci. 2017;133(4):203–213.
  • Park BS, Tu TH, Lee H, et al. Beta-aminoisobutyric acid inhibits hypothalamic inflammation by reversing microglia activation. Cells. 2019;8(12):1609.
  • Minato T, Nakamura N, Saiki T, et al., β-Aminoisobutyric acid, L-BAIBA, protects PC12 cells from hydrogen peroxide-induced oxidative stress and apoptosis via activation of the AMPK and PI3K/Akt pathway, IBRO neuroscience reports 12 (2022) 65–72.
  • Yu Y, Chen W, Yu M, et al. Exercise-generated β-Aminoisobutyric acid (BAIBA) reduces cardiomyocyte metabolic stress and apoptosis caused by mitochondrial dysfunction through the miR-208b/AMPK pathway. Front Cardiovasc Med. 2022;9:803510.
  • Zheng X, Zhou L, Jin Y, et al. β-Aminoisobutyric acid supplementation attenuated salt-sensitive hypertension in Dahl salt-sensitive rats through prevention of insufficient fumarase. Amino Acids. 2022;54(2):169–180.
  • Ye C, Geng Z, Zhang LL, et al. Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects. Acta Pharmacol Sin. 2022. DOI:10.1038/s41401-022-00875-w
  • Sun HJ, Ren XS, Xiong XQ, et al. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death & Disease. 2017;8(10):e3074.
  • Tu H, Wang W, Feng Y, et al. β-Patchoulene represses hypoxia-induced proliferation and epithelial-mesenchymal transition of liver cancer cells. Bioengineered. 2022;13(5):11907–11922.
  • Sun H, Zhu X, Cai W, et al. Hypaphorine attenuates lipopolysaccharide-induced endothelial inflammation via regulation of TLR4 and PPAR-γ dependent on PI3K/Akt/mTOR signal pathway. Int J Mol Sci. 2017;18(4):844.
  • Xia MZ, Liang YL, Wang H, et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res. 2012;53(4):325–334.
  • Cao X, Nie X, Xiong S, et al. Renal protective effect of polysulfide in cisplatin-induced nephrotoxicity. Redox Biol. 2018;15:513–521.
  • Ma W, Zhong T, Chen J, et al. Exogenous H(2)S reverses high glucose-induced endothelial progenitor cells dysfunction via regulating autophagy. Bioengineered. 2022;13(1):1126–1136.
  • Lu QB, Wan MY, Wang PY, et al. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFkappaB/mTOR/P70S6K signaling cascade. Redox Biol. 2018;14:656–668.
  • Sun HJ, Zhao MX, Ren XS, et al. Salusin-beta promotes vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via ROS/NFkappaB/MMP-9 pathway. Antioxid Redox Signal. 2016;24(18):1045–1057.
  • Yang H, Liu J, Chen X, et al. Angptl2 gene knockdown is critical for abolishing angiotensin II-induced vascular smooth muscle cell proliferation and migration. Biochem Cell Biol. 2022;100(1):59–67.
  • Shi N, Chen SY. Mechanisms simultaneously regulate smooth muscle proliferation and differentiation. J Biomed Res. 2014;28(1):40–46.
  • Zheng B, Han M, Wen JK. Role of Krüppel-like factor 4 in phenotypic switching and proliferation of vascular smooth muscle cells. IUBMB Life. 2010;62(2):132–139.
  • Caillon A, Schiffrin EL. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence. Curr Hypertens Rep. 2016;18(3):21.
  • Lu QB, Wang HP, Tang ZH, et al. Nesfatin-1 functions as a switch for phenotype transformation and proliferation of VSMCs in hypertensive vascular remodeling, Biochimica et biophysica acta. Mol Basis Dis. 2018;1864(6 Pt A):2154–2168.
  • Kumar A, Chatterjee I, Gujral T, et al. Activation of nuclear factor-κB by tumor necrosis factor in intestinal epithelial cells and mouse intestinal epithelia reduces expression of the chloride transporter SLC26A3. Gastroenterology. 2017;153(5):1338–1350.e3.
  • Sun HJ, Zhao MX, Ren XS, et al. Salusin-β promotes vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via ROS/NFκB/MMP-9 pathway. Antioxid Redox Signal. 2016;24(18):1045–1057.
  • Badran A, Nasser SA. Reactive oxygen species: modulators of phenotypic switch of vascular smooth muscle cells. Int J Mol Sci. 2020;21(22).
  • Belambri SA, Marzaioli V, Hurtado-Nedelec M. Impaired p47phox phosphorylation in neutrophils from p67phox-deficient chronic granulomatous disease patients. Blood. 2022;139:2512–2522.
  • Manley S, Williams JA, Ding WX. Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood). 2013;238(5):525–538.
  • Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23(22):8137–8151.
  • Xu Q, Si LY. Protective effects of AMP-activated protein kinase in the cardiovascular system. J Cell Mol Med. 2010;14(11):2604–2613.
  • Xia L, Sun C, Zhu H, et al. Melatonin protects against thoracic aortic aneurysm and dissection through SIRT1-dependent regulation of oxidative stress and vascular smooth muscle cell loss. J pineal res. 2020;69(1):e12661.
  • Thompson AM, Martin KA, Rzucidlo EM. Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK. PloS one. 2014;9(1):e85495.
  • Herrero-Martín G, Høyer-Hansen M, García-García C, et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009;28(6):677–685.
  • Guo Z, Tuo H, Tang N, et al. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. Int J Biol Sci. 2022;18(2):826–840.
  • Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension (Dallas, Tex.: 1979). 2001;38(3 Pt 2):581–587.
  • Huynh DTN, Heo KS. Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis. Arch Pharm Res. 2021;44(12):1051–1061.
  • Li Z, Xu C, Sun D. MicroRNA-488 serves as a diagnostic marker for atherosclerosis and regulates the biological behavior of vascular smooth muscle cells. Bioengineered. 2021;12(1):4092–4099.
  • Gan X, Zhao J, Chen Y, et al. Plin5 inhibits proliferation and migration of vascular smooth muscle cell through interacting with PGC-1α following vascular injury. Bioengineered. 2022;13(4):10665–10678.
  • Wang , F , Zhen , Y , Si , C et al. WNT5B promotes vascular smooth muscle cell dedifferentiation via mitochondrial dynamics regulation in chronic thromboembolic pulmonary hypertension. J Cell Physiol. 2022; 237;(1):789–803.
  • Wang S, Li J, Chen A, et al. Differentiated expression of long non-coding RNA-small nucleolar RNA host gene 8 in atherosclerosis and its molecular mechanism. Bioengineered. 2021;12(1):7167–7176.
  • Lai YM, Fukuda N, Su JZ, et al. Novel mechanisms of the antiproliferative effects of amlodipine in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertens Res. 2002;25(1):109–115.
  • Xiang Y, Li L, Xia S, et al. Cullin3 (CUL3) suppresses proliferation, migration and phenotypic transformation of PDGF-BB-stimulated vascular smooth muscle cells and mitigates inflammatory response by repressing Hedgehog signaling pathway. Bioengineered. 2021;12(2):9463–9472.
  • Wang M, Kim SH, Monticone RE, et al. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension (Dallas, Tex.: 1979). 2015;65(4):698–703.
  • Camargo LL, Montezano AC, Hussain M. Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovascular Research. 2022;118(5):1359–1373.
  • Zhou B, Wu LL, Zheng F, et al. miR-31-5p promotes oxidative stress and vascular smooth muscle cell migration in spontaneously hypertensive rats via inhibiting FNDC5 expression. Biomedicines. 2021;9(8):1009.
  • Wenzel U, Turner JE, Krebs C, et al. Immune mechanisms in arterial hypertension. J Am Soc Nephrol. 2016;27(3):677–686.
  • Gan L, Liu D, Liu J, et al. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021;6(1):223.
  • Tuo B, Xu J, Zhang W, et al. Upregulation of miR-140-5p uncouples mitochondria by targeting Bcl-xL in vascular smooth muscle cells in angiotensin II-induced hypertension. Bioengineered. 2022;13(1):1137–1148.
  • Liu H, Jia K, Ren Z. PRMT5 critically mediates TMAO-induced inflammatory response in vascular smooth muscle cells. Cell Death Dis. 2022;13(4):299.
  • Jiang Z, Huang J, You L, et al. Protective effects of BP-1-102 against intracranial aneurysms-induced impairments in mice. J Drug Target. 2021;29(9):974–982.
  • Hernanz R, Martínez-Revelles S, Palacios R, et al. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. Br J Pharmacol. 2015;172(12):3159–3176.
  • Njau F, Haller H. Calcium dobesilate modulates PKCδ-NADPH oxidase- MAPK-NF-κB signaling pathway to reduce CD14, TLR4, and MMP9 expression during monocyte-to-macrophage differentiation: potential therapeutic implications for atherosclerosis. Antioxidants (Basel). 2021;10(11):1798.
  • El Benna J, Faust RP, Johnson JL, et al. Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem. 1996;271(11):6374–6378.
  • Ruan H, Wang L, Wang J, et al. Sika deer antler protein against Acetaminophen-induced oxidative stress and apoptosis in HK-2 cells via activating Nrf2/keap1/HO-1 pathway. J Food Biochem. 2019;43(12):e13067.
  • Sun H, Zhu X, Zhou Y, et al. C1q/TNF-related protein-9 ameliorates Ox-LDL-induced endothelial dysfunction via PGC-1α/AMPK-mediated antioxidant enzyme induction. Int J Mol Sci. 2017;18(6):1097.
  • Kansanen E, Kuosmanen SM, Leinonen H, et al. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1(1):45–49.
  • Pillai R, Hayashi M, Zavitsanou AM, et al. NRF2: kEAPing tumors protected. Cancer Discov. 2022;12(3):625–643.
  • Wang Y, Liang Y, Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett. 2011;585(7):986–994.
  • Zhao J, He X, Zuo M, et al. Anagliptin prevented interleukin 1β (IL-1β)-induced cellular senescence in vascular smooth muscle cells through increasing the expression of sirtuin1 (SIRT1). Bioengineered. 2021;12(1):3968–3977.
  • Zhao ZY, Shi ZY, Zhang ZZ, et al. Anti-hypertensive and endothelia protective effects of Fufang Qima capsule on primary hypertension via adiponectin/adenosine monophosphate activated protein kinase pathway. J Tradit Chin Med = Chung i tsa chih ying wen pan. 2021;41(6):919–926.
  • Ho L, Hossen N, Nguyen T, et al. Epigenetic mechanisms as emerging therapeutic targets and microfluidic chips application in pulmonary arterial hypertension. Biomedicines. 2022;10(1):170.
  • Sun HJ, Xiong SP, Cao X, et al. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol. 2021;38:101813.
  • Lai CH, Chang CW, Lee FT, et al. Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice. Atherosclerosis. 2020;297:16–24.
  • Huang S, You S, Qian J, et al. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY). 2021;13(3):4409–4427.
  • Toniolo A, Warden EA, Nassi A, et al. Regulation of SIRT1 in vascular smooth muscle cells from streptozotocin-diabetic rats. PloS one. 2013;8(5):e65666.