2,883
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected Solanaceae crop plants

ORCID Icon &
Pages 14646-14666 | Received 15 Feb 2022, Accepted 05 Jul 2022, Published online: 26 Jul 2022

References

  • Knapp S, Bohs L, Nee M, et al. Solanaceae—A model for linking genomics with biodiversity.Comp Funct Genomics. 2004;5(3):285–291.
  • Gebhardt C. The historical role of species from the Solanaceae plant family in genetic research.Theor Appl Genet. 2016;129(12):2281–2294.
  • Samuels J. Biodiversity of food species of the Solanaceae family: a preliminary taxonomic inventory of subfamily solanoideae.Resources. 2015;4(2):277–322.
  • Olaya M, Lara M, Martín-María M-A, et al. Fruit and vegetable consumption and potential moderators associated with all-cause mortality in a representative sample of Spanish older adults.Nutrients. 2019;11(8):1794.
  • Schreinemachers P, Simmons EB, Wopereis MCS. Tapping the economic and nutritional power of vegetables. Glob Food Sec. 2018;16:36–45.
  • SM Y. Review of post-harvest losses of fruits and vegetables. Biomed J Sci Tech Res. 2019;13.
  • Tournas VH. Spoilage of vegetable crops by bacteria and fungi and related health hazards.Crit Rev Microbiol. 2005;31(1):33–44.
  • Engelhardt S, Stam R, Good Riddance? HR. Breaking disease susceptibility in the era of new breeding technologies.Agronomy. 2018;8(7):114.
  • Romero FM, Gatica-Arias A. CRISPR/Cas9: development and application in rice breeding. Rice Sci 2019; 26:265–281;(5).
  • Lorang JM, Sweat TA, Wolpert TJ. Plant disease susceptibility conferred by a “resistance” gene.Proc Natl Acad Sci. 2007;104(37):14861–14866.
  • Zaidi SS-A, Mukhtar MS, Mansoor S. Genome Editing: targeting Susceptibility Genes for Plant Disease Resistance.Trends Biotechnol. 2018;36(9):898–906.
  • Kieu NP, Lenman M, Wang ES, et al. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes.Sci Rep. 2021;11(1):4487.
  • Sun K, Schipper D, Jacobsen E, et al. Silencing susceptibility genes in potato hinders primary infection with Phytophthora infestans at different stages. Hortic Res. 2022;9.
  • Smith HO, Welcox KW. A restriction enzyme from hemophilus influenzae.J Mol Biol. 1970;51(2):379–391.
  • Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14: 8096–8106.
  • Kamburova VS, Nikitina EV, Shermatov SE, et al. Genome editing in plants: an overview of tools and applications. Int J Agron. 2017;2017:1–15.
  • Liu RM, Liang LL, Freed E, et al. Synthetic chimeric nucleases function for efficient genome editing.Nat Commun. 2019;10(1):5524.
  • Wang L, Li F, Dang L, et al. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci. 2016;17(5):626.
  • Dong OX, Ronald PC. Targeted DNA insertion in plants.Proc Natl Acad Sci. 2021;118(22):e2004834117.
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.Proc Natl Acad Sci. 1996;93(3):1156–1160.
  • Curtin SJ, Zhang F, Sander JD, et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2011;156(2):466–473.
  • Beerli RR, Barbas CF. Engineering polydactyl zinc-finger transcription factors.Nat Biotechnol. 2002;20(2):135–141.
  • Gaj T, Gersbach CA, Barbas CFZFN. TALEN, and CRISPR/Cas-based methods for genome engineering.Trends Biotechnol. 2013;31(7):397–405.
  • Mushtaq M, Sakina A, Wani SH, et al. Harnessing genome editing techniques to engineer disease resistance in plants. Front Plant Sci. 2019;10.
  • Lee HB, Sundberg BN, Sigafoos AN, et al. Genome engineering with TALE and CRISPR systems in neuroscience. Front Genet. 2016;7.
  • Kim E, Kim S, Kim DH, et al. Precision genome engineering with programmable DNA-nicking enzymes.Genome Res. 2012;22(7):1327–1333.
  • Li H, Yang Y, Hong W, et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5: 1.
  • Jaganathan D, Ramasamy K, Sellamuthu G, et al. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9:985.
  • Sera T. Inhibition of virus DNA replication by artificial zinc finger proteins.J Virol. 2005;79(4):2614–2619.
  • Chen W, Qian Y, Wu X, et al. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif.Virus Genes. 2014;48(3):494–501.
  • Takenaka K, Koshino-Kimura Y, Aoyama Y, et al. Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins.Nucleic Acids Symp Ser. 2007;51(1):429–430.
  • Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function.Annu Rev Phytopathol. 2010;48(1):419–436.
  • Jankele R, Svoboda P. TAL effectors: tools for DNA Targeting.Brief Funct Genomics. 2014;13(5):409–419.
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing.Nat Rev Mol Cell Biol. 2013;14(1):49–55.
  • Boch J, Scholze H, Schornack S, et al. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors.Science. 2009;326(5959):1509–1512.
  • Lamb BM, Mercer AC, Barbas CF. Directed evolution of the TALE N-terminal domain for recognition of all 5′.Nucleic Acids Res. 2013;41(21):9779–9785.
  • Kim YG, Chandrasegaran S. Chimeric restriction endonuclease.Proc Natl Acad Sci. 1994;91(3):883–887.
  • Vu T, Doan D, Kim J, et al. CRISPR/Cas‐based precision genome editing via microhomology‐mediated end joining.Plant Biotechnol J. 2021;19(2):230–239.
  • Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice.Nat Biotechnol. 2012;30(5):390–392.
  • Zhou J, Peng Z, Long J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82(4):632–643.
  • Blanvillain-Baufumé S, Reschke M, Solé M, et al. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14 -inducing TAL effectors. Plant Biotechnol J. 2017;15(3):306–317.
  • Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):686–688.
  • Beetham PR, Kipp PB, Sawycky XL, et al. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA. 1999;96 8774–8778. 15.
  • Songstad DD, Petolino JF, Voytas DF, et al. Genome editing of plants.CRC Crit Rev Plant Sci. 2017;36(1):1–23.
  • Sauer NJ, Mozoruk J, Miller RB, et al. Oligonucleotide-directed mutagenesis for precision gene editing.Plant Biotechnol J. 2016;14(2):496–502.
  • Abdurakhmonov IY. Genomics era for plants and crop species – advances made and needed tasks ahead [Internet]. In: Plant Genomics. InTech; 2016. Available from: http://www.intechopen.com/books/plant-genomics/genomics-era-for-plants-and-crop-species-advances-made-and-needed-tasks-ahead
  • Zhang F, Puchta H, Thomson JG. editors. Advances in new technology for targeted modification of plant genomes. Internet]. New York NY: Springer New York; 2015. Available from. http://link.springer.com/10.1007/978-1-4939-2556-8
  • Zhu T, Peterson DJ, Tagliani L, et al. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides.Proc Natl Acad Sci. 1999;96(15):8768–8773.
  • Beetham PR, Kipp PB, Sawycky XL, et al. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci. 1999;96 8774–8778. 15.
  • Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product.J Bacteriol. 1987;169(12):5429–5433.
  • Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 2015;13(11):722–736.
  • Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.
  • Liu TY, Doudna JA. Chemistry of class 1 CRISPR-Cas effectors: binding, editing, and regulation.J Biol Chem. 2020;295(42):14473–14487.
  • Makarova KS, Zhang F, Koonin EV. SnapShot: class 2 CRISPR-Cas Systems.Cell. 2017;168(1–2):328–328.e1.
  • Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13. Science (80) [Internet]. 2017;358(6366):1019–1027.
  • Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea.Nat. 2012;482(7385):331–338.
  • Bhaya D, Davison M, Barrangou R. CRISPR-cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation.Annu Rev Genet. 2011;45(1):273–297.
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (80) [Internet]. 2012;337(6096):816–821.
  • Liu M, Zhang W, Xin C, et al. Global detection of DNA repair outcomes induced by CRISPR–Cas9.Nucleic Acids Res. 2021;49(15):8732–8742.
  • Yan M-Y, Yan H-Q, Ren G-X, et al. CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol. 2017;83.
  • Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering.Cell. 2016;164(1–2):29–44.
  • Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Internet] 2016; 353:aaf5573;(6299).
  • Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.Nat Biotechnol. 2014;32(9):947–951.
  • Ji X, Zhang H, Zhang Y, et al. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants.Nat Plants. 2015;1(10):15144.
  • Pyott DE, Sheehan E, Molnar A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants.Mol Plant Pathol. 2016;17(8):1276–1288.
  • Wang F, Wang C, Liu P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922.PLoS One. 2016;11(4):e0154027.
  • Chandrasekaran J, Brumin M, Wolf D, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology.Mol Plant Pathol. 2016;17(7):1140–1153.
  • Shi J, Gao H, Wang H, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions.Plant Biotechnol J. 2017;15(2):207–216.
  • Mao X, Zheng Y, Xiao K, et al. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.Biochem Biophys Res Commun. 2018;495(1):461–467.
  • Jaganathan D, Ramasamy K, Sellamuthu G, et al. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9.
  • Sauer NJ, Narváez-Vásquez J, Mozoruk J, et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 2016;170(4):1917–1928.
  • Oerke E-C, Dehne H-W. Safeguarding production—losses in major crops and the role of crop protection.Crop Prot. 2004;23(4):275–285.
  • Rupp J. Jacobsen B. Bacterial and fungal diseases of potato and their management. 2017;:1–12. Available from: http://www.montanaspud.org/documents/extension-information/potatoes12-27-3.pdf
  • Knorr LC. Suscept range of the potato ring rot bacterium.Am Potato J. 1948;25(10):361–371.
  • Bonas U, Conrads-Strauch J, Balbo I. Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3.Mol Gen Genet MGG. 1993;238–238(1–2):261–269.
  • Barka GDGD, Lee J. Molecular marker development and gene cloning for diverse disease resistance in pepper (Capsicum annuum L.): current status and prospects. Plant Breed Biotechnol 2020; 8:89–113;(2).
  • OEPP/EPPO. Outdoor solanaceous crops. Blackwell Publ Ltd Eur Mediterr Plant Prot Organ; 2004. p. 79–90.
  • Gutarra L, Herrera J, Fernandez E, et al. Diversity, pathogenicity, and current occurrence of bacterial wilt bacterium ralstonia solanacearum in Peru. Front Plant Sci. 2017;8.
  • Abad JA, Moyer JW, Kennedy GG, et al. Tomato spotted wilt virus on potato in eastern North Carolina.Am J Potato Res. 2005;82(3):255–261.
  • Ward CW, Shukla DD. Taxonomy of potyviruses: current problems and some solutions.Intervirology. 1991;32(5):269–296.
  • Bazzini AA, Asurmendi S, Hopp HE. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively.J Gen Virol. 2006;87(4):1005–1012.
  • Rashid F, Khalid S, Ahmad I, et al. Potato virus X (PVX) resistance in tomato cultivars. Trop Pest Manag 1989; 35:357–358.(4)
  • Fortes IM, Navas-Castillo J. Potato, an experimental and natural host of the crinivirus Tomato chlorosis virus.EurJ Plant Pathol. 2012;134(1):81–86.
  • Hückelhoven R, Eichmann R, Weis C, et al. Genetic loss of susceptibility: a costly route to disease resistance? Plant Pathol. 2013;62: 56–62.
  • Dong OX, Ronald PC. Genetic engineering for disease resistance in plants: recent progress and future perspectives.Plant Physiol. 2019;180(1):26–38.
  • van Schie Ccn, Takken FLW, van Schie FLW. Susceptibility genes 101: how to be a good host.Annu Rev Phytopathol. 2014;52(1):551–581.
  • Pessina S, Lenzi L, Perazzolli M, et al. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine.Hortic Res. 2016;3(1):16016.
  • Ellis C, Karafyllidis I, Wasternack C, et al. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.Plant Cell. 2002;14(7):1557–1566.
  • Oliva R, Ji C, Atienza-Grande G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol. 2019;37(11):1344–1350.
  • Bastet A, Zafirov D, Giovinazzo N, et al. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses.Plant Biotechnol J. 2019;17(9):1736–1750.
  • Cantu D, Vicente AR, Greve LC, et al. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea.Proc Natl Acad Sci. 2008;105(3):859–864.
  • Curvers K, Seifi H, Mouille G, et al. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to botrytis cinerea. Plant Physiol. 2010;154(2):847–860.
  • Harrison E, Burbidge A, Okyere JP, et al. Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis.Plant Growth Regul. 2011;64(3):301–309.
  • Zheng Z, Nonomura T, Appiano M, et al. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by leveillula taurica.PLoS One. 2013;8(7):e70723.
  • Flors V, de la O LM, Vicedo B, et al. Absence of the endo-β-1,4-glucanases Cel1 and Cel2 reduces susceptibility to botrytis cinerea in tomato.Plant J. 2007;52(6):1027–1040.
  • S-K O, Baek K-H, Park JM, et al. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense.New Phytol. 2008;177(4):977–989.
  • Wang Y, Dang F, Liu Z, et al. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Mol Plant Pathol. 2013;14(2):131–144.
  • Huibers RP, AEHM L, Gao D, et al. Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1.PLoS One. 2013;8(6):e67467.
  • Krasikov V, Dekker HL, Rep M, et al. The tomato xylem sap protein XSP10 is required for full susceptibility to fusarium wilt disease.J Exp Bot. 2011;62(3):963–973.
  • Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science (80) [Internet]. 2007;318(5850):648–651.
  • Mazier M, Flamain F, Nicolaï M, et al. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in Tomato.PLoS One. 2011;6(12):e29595.
  • Truniger V, Aranda MA. Recessive resistance to plant viruses [Internet]. 2009. 119–231.Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065352709075046
  • Charron C, Nicolaï M, Gallois J-L, et al. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg.Plant J. 2008;54(1):56–68.
  • Sun K, Wolters A-MA, AEHM L, et al. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew.Transgenic Res. 2016;25(2):123–138.
  • Butler NM, Baltes NJ, Voytas DF, et al. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases. Front Plant Sci. 2016;7.
  • Andersson M, Turesson H, Nicolia A, et al. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts.Plant Cell Rep. 2017;36(1):117–128.
  • Yasumoto S, Umemoto N, Lee HJ, et al. Efficient genome engineering using Platinum TALEN in potato.Plant Biotechnol. 2019;36(3):167–173.
  • Sun K, Wolters A-MA, Vossen JH, et al. Silencing of six susceptibility genes results in potato late blight resistance.Transgenic Res. 2016;25(5):731–742.
  • Andolfo G, Iovieno P, Frusciante L, et al. Genome-editing technologies for enhancing plant disease resistance. Front Plant Sci. 2016;7.
  • Zhan X, Zhang F, Zhong Z, et al. Generation of virus-resistant potato plants by RNA genome targeting.Plant Biotechnol J. 2019;17(9):1814–1822.
  • Jorgensen IH. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley.Euphytica. 1992;63(1–2):141–152.
  • Nekrasov V, Wang C, Win J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion.Sci Rep. 2017;7(1):482.
  • de TDP, Brail T, Dahlbeck D Q, et al. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv Prepr. 2016: 1–23
  • Bai Y, Pavan S, Zheng Z, et al. Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol Plant-Microbe Interact. 2008;21(1):30–39.
  • Ortigosa A, Gimenez-Ibanez S, Leonhardt N, et al. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2.Plant Biotechnol J. 2019;17(3):665–673.
  • Ali Z, Abulfaraj A, Idris A, et al. CRISPR/Cas9-mediated viral interference in plants.Genome Biol. 2015;16(1):238.
  • Kang Y, Kim K, Shim S, et al. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean.BMC Plant Biol. 2012;12(1):139.
  • Hwang J, Li J, Liu W-Y, et al. Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper.Mol Cells. 2009;27(3):329–336.
  • Joshi KR. Genome editing in chili pepper using a CRISPR/Cas9 cytidine base editing system [Internet]. In: Plant Genomics. Berlin: EuroSciCon; 2019. 1–16. Available from: https://www.imedpub.com/conference-abstracts-files/genome-editing-in-chili-pepper-using-a-crisprcas9
  • Yoon Y-J, Venkatesh J, Lee J-H, et al. Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Front Plant Sci. 2020; 11.
  • Roy A, Zhai Y, Ortiz J, et al. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development.PLoS One. 2019;14(10):e0223765.
  • Hansjakob A, Riederer M, Hildebrandt U. Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of blumeria graminis.Plant Pathol. 2011;60(6):1151–1161.
  • Piffanelli P, Ramsay L, Waugh R, et al. A barley cultivation-associated polymorphism conveys resistance to powdery mildew.Nat. 2004;430(7002):887–891.