15,290
Views
2
CrossRef citations to date
0
Altmetric
Review

Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes

ORCID Icon, , , ORCID Icon, , , & show all
Pages 14681-14718 | Received 28 Feb 2022, Accepted 08 Jul 2022, Published online: 10 Aug 2022

References

  • Simonazzi A, Cid AG, Villegas M, et al. Nanotechnology applications in drug controlled release. Drug Target. Stimuli Sensitive Drug Deliv. Syst. 2018: 81–116. 10.1016/B978-0-12-813689-8.00003-3.
  • Marc W. Harrold and Robin M. Zavod. Medicinal chemistry, chapter 2: functional group characteristics and roles. Basic Concepts Med Chem. 2020;21–66. 10.37573/9781585286027.002.
  • Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012;486(7403):361–367.
  • Odiba A, Ukegbu C, Anunobi O, et al. Making drugs safer: improving drug delivery and reducing the side effect of drugs on the human biochemical system. Nanotechnol Rev. 2016;5(2). DOI:10.1515/ntrev-2015-0055
  • Robinson SW, Afzal AM, Leader DP. Bioinformatics: concepts, methods, and data. Med. 2014;259–287. DOI:10.1016/B978-0-12-386882-4.00013-X
  • Siew LF, Man S-M, Newton JM, et al. Amylose formulations for drug delivery to the colon: a comparison of two fermentation models to assess colonic targeting performance in vitro. Int J Pharm. 2004;273(1–2):129–134.
  • Dejaco C, Haas T, Kirchgatterer A, et al. Aminosalicylate und Steroide in der Behandlung von chronisch entzündlichen Darmerkrankungen - Konsensuspapier der Arbeitsgruppe für chronisch entzündliche Darmerkrankungen der ÖGGH, Z. Gastroenterol. 2006;44:525–538.
  • Baas J, Senninger N, Elser H. The reticuloendothelial system. An overview of function, pathology and recent methods of measurement. Z Gastroenterol. 1994;32(2):117–123.
  • Kewal K Jain. Drug delivery systems, in: strateg. to modify drug release from pharm. Syst. 2015;87–194. 10.1016/B978-0-08-100092-2.00006-0.
  • Bajpai AK, Saini RK. Polymeric nanomaterials in drug delivery, in. Adv Polym Nanomater Biomed Appl. 2021;65–100. DOI:10.1016/B978-0-12-814657-6.00010-0
  • Dewhirst M, Stauffer PR, Das S, et al. Hyperthermia, in: clin. Radiat Oncol. 2016;381–398.e6. DOI:10.1016/B978-0-323-24098-7.00021-6
  • Omar Ashraf ElFar, Nurul Syahirah Mat Aron, Kit Wayne Chew, Pau Loke Show.Omar Ashraf Chapter 19 - Sustainable management of algal blooms in ponds and rivers Biomass, Biofuels, Biochemicals Circular Bioeconomy: Technologies for Waste Remediation 2022. pp. 431–444. doi:10.1016/B978-0-323-88511-9.00012-4.
  • Tiwari AK, Tiwari BS. Cyanotherapeutics: an emerging field for future drug discovery. Appl Phycol. 2020;1(1):44–57.
  • Soni RA, Sudhakar K, Rana RS. Spirulina – from growth to nutritional product: a review. Trends Food Sci Technol. 2017;69:157–171.
  • Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae, Bioresour. Technol. 2008;99:4021–4028.
  • ElFar OA, Chang C-K, Leong HY, et al. Prospects of Industry 5.0 in algae: customization of production and new advance technology for clean bioenergy generation. Energy Convers Manag. 2020;X:100048.
  • Oswald WJ, Golueke CG. Biological Transformation of Solar Energy. in. 1960;223–262. DOI:10.1016/S0065-2164(08)70127-8
  • Conradie KR, Du Plessis S, Venter A. Re-identification of “Oscillatoria simplicissima” isolated from the vaal river, South Africa, as planktothrix pseudagardhii. South African J Bot. 2008;74(1):101–110.
  • Becker EW. Micro-algae as a source of protein, Biotechnol. Adv. 2007;25:207–210.
  • Walter JM, Coutinho FH, Dutilh BE, et al. 2017. Ecogenomics and taxonomy of cyanobacteria phylum. Front Microbiol. 8; 10.3389/fmicb.2017.02132.
  • Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216.
  • Izadi M, Fazilati M. Extraction and purification of phycocyanin from spirulina platensis and evaluating its antioxidant and anti- inflammatory activity. Asian J Green Chem. 2018;2:364–379.
  • Hoseini SM, Khosravi-Darani K, Mozafari MR. Nutritional and medical applications of spirulina microalgae. Mini-Reviews Med Chem. 2013;13(8):1231–1237.
  • Newman DJ. Are microbial endophytes the ‘actual’ producers of bioactive antitumor agents?, Trends in cancer. 2018;4:662–670. DOI:10.1016/j.trecan.2018.08.002.
  • Vallianou NG, Evangelopoulos A, Schizas N, et al. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 2015;35:645–651.
  • Sili C, Torzillo G, Vonshak A. Arthrospira (Spirulina). Ecol. Cyanobacteria II. 2012;677–705. DOI:10.1007/978-94-007-3855-3_25
  • Koru E. Earth food spirulina (arthrospira): production and quality standarts. Food Addit., InTech. 2012. DOI:10.5772/31848
  • Vonshak A. Spirulina Platensis. Arthrospira. 1997; CRC Press. doi:10.1201/9781482272970
  • Vo T-S, Ngo D-H, Kim S-K. Nutritional and pharmaceutical properties of microalgal spirulina. Handb. Mar. Microalgae. 2015;299–308. DOI:10.1016/B978-0-12-800776-1.00019-4
  • Mani UV, Desai S, Iyer U. Studies on the long-term effect of spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. J Nutraceuticals, Funct Med Foods. 2000;2(3):25–32.
  • Wan D, Wu Q, Kuča K. Spirulina. Nutraceuticals. 2016;569–583. DOI:10.1016/B978-0-12-802147-7.00042-5
  • Batista AP, Gouveia L, Bandarra NM, et al. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res. 2013;2:164–173. DOI:10.1016/j.algal.2013.01.004.
  • Ghaly A, Hammouda A, and Al Hattab M. Development and Sensory Evaluation of Spirulina Chocolate Chip Oatmeal Cookies International Journal of Bioprocess and Biotechnological Advancements. 2015;1(2):63–73.
  • Karkos PD, Leong SC, Karkos CD, et al. Spirulina in clinical practice: evidence-based human applications, evidence-based complement. Altern Med. 2011;1–4. DOI:10.1093/ecam/nen058
  • Abdel-mawla E, Transport M. Production and evaluation of some extruded food products using spirulina algae. Ann Agric Sci Moshtohor. 2014;52:495–510.
  • Shalla A, Bhat M. Smart polymer composites in drug delivery, in. Smart Polym Nanocomposites. 2021; 261–294. DOI:10.1016/B978-0-12-819961-9.00009-8.
  • Rajagopalan R, Yakhmi JV. Nanotechnological approaches toward cancer chemotherapy. Nanostructures Cancer Ther. 2017;211–240. DOI:10.1016/B978-0-323-46144-3.00008-8
  • Chen Y-H, Chang G-K, Kuo S-M, et al. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci Rep. 2016;6(1):24253.
  • Sarada R, Pillai MG, Ravishankar GA. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem. 1999;34(8):795–801.
  • Sarada DVL, Sreenath Kumar C, Rengasamy R. Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria. World J Microbiol Biotechnol. 2011;27(4):779–783.
  • Stanic-Vucinic D, Minic S, Nikolic MR, et al. Spirulina phycobiliproteins as food components and complements. Microalgal Biotechnol., InTech. 2018: 10.5772/intechopen.73791.
  • Phang SM, Miah MS, Yeoh BG, et al. Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol. 2000;12(3/5):395–400.
  • Dillon JC, Phuc AP, and Dubacq JP. Nutritional value of the alga spirulina. Plants in Human Nutrition. n.d.;32–46. DOI:10.1159/000424464.
  • BANDARRA NM, PEREIRA PA, BATISTA I, et al. FATTY ACIDS, STEROLS AND ?-TOCOPHEROL IN ISOCHRYSIS GALBANA. J Food Lipids. 2003;10(1):25–34.
  • Donato M, Vilela MH, BANDARRA NM. FATTY ACIDS, STEROLS, ?-TOCOPHEROL AND TOTAL CAROTENOIDS COMPOSITION OF DIACRONEMA VLKIANUM. J Food Lipids. 2003;10(4):267–276.
  • Molina Grima E, Belarbi E-H, Acién Fernández F, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20(7–8):491–515.
  • Nicoletti M. Microalgae nutraceuticals. Foods. 2016;5(3):54. doi: 10.3390/foods5030054.
  • Becker W. Microalgae in human and animal nutrition, in: handb. Microalgal Cult. Oxford UK: Blackwell Publishing Ltd, n.d.:312–351. DOI:10.1002/9780470995280.ch18.
  • BELAY A. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutr Assoc. 2002;5:27–48.
  • Grosshagauer S, Kraemer K, Somoza V. The True Value of Spirulina. J Agric Food Chem. 2020;68(7403):4109–4115.
  • Marles RJ, Barrett ML, Barnes J, et al. United States pharmacopeia safety evaluation of spirulina. Crit Rev Food Sci Nutr. 2011;51(7):593–604.
  • Nuhu AA. Spirulina (Arthrospira) : an important source of nutritional and medicinal compounds. J Mar Biol. 2013;2013:1–8.
  • Banakar V, Alam Q, Rajendra SV, et al. The Boon of Nature. Int J Res Pharm Sci. 2020;11(1):57–62.
  • Hutadilok-Towatana N, Reanmongkol W, Panichayupakaranant P. Evaluation of the toxicity of Arthrospira (Spirulina) platensis extract. J Appl Phycol. 2010;22(5):599–605.
  • Ngu E-L, Ko C-L, Tan C-Y, et al. Phytochemical profiling and in vitro screening for neuritogenic and antioxidant activities of Spirulina platensis. Indian J Pharm Educ Res. 2021;55(3):812–822.
  • Wiatrak B, Kubis-Kubiak A, and Piwowar A, et al. PC12 Cell Line: Cell types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells. 2020;9:958. DOI:10.3390/cells9040958.
  • Sagara T, Nishibori N, Kishibuchi R, et al. Non-protein components of Arthrospira (Spirulina) platensis protect PC12 cells against iron-evoked neurotoxic injury. J Appl Phycol. 2015;27(2):849–855.
  • Selmi C, Leung PS, Fischer L, et al. The effects of Spirulina on anemia and immune function in senior citizens, Cell. Mol Immunol. 2011;8(3):248–254.
  • Johnson PE, Shubert LE. Availability of iron to rats from spirulina, a blue-green alga. Nutr Res. 1986;6(1):85–94.
  • Suzer B, Seyidoglu N, Tufekci K, et al. The relationship between Spirulina platensis and selected biomechanical indicators of tibiae in rats, Vet. Med (Praha). 2020;65(No. 1):18–24.
  • Cos P, Vlietinck AJ, Vanden Berghe D, et al. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006;106(3):290–302.
  • Plaza M, Herrero M, Cifuentes A, et al. Innovative Natural Functional Ingredients from Microalgae. J Agric Food Chem. 2009;57(16):7159–7170.
  • Nege AS, Dewi Masithah E, Khotib J. Trends in the uses of spirulina microalga: a mini-review. J Ilm Perikan Dan Kelaut. 2020;12(1):149.
  • Del Sesto RE, Koppisch AT, and Fox DT, et al. Biphasic extraction, recovery and identification of organic and inorganic compounds with ionic liquids. American Chemical Society. 2017;283–302. Doi:10.1021/bk-2017-1250.ch013.
  • Martins M, Albuquerque CM, Pereira CF, et al. Recovery of chlorophyll a derivative from spirulina maxima : its purification and photosensitizing potential. Its Purification and Photosensitizing Potential, ACS Sustain. Chem. Eng. 2021;9(4):1772–1780.
  • Chang Y-K, Show P-L, Lan JC-W, et al. Isolation of C-phycocyanin from Spirulina platensis microalga using Ionic liquid based aqueous two-phase system, Bioresour. Technol. 2018;270:320–327.
  • Purohit A, Kumar V, Chownk M, et al. Processing-independent extracellular production of high purity C-phycocyanin from Spirulina platensis. ACS Biomater Sci Eng. 2019;5(7):3237–3245.
  • Li J, Zhang Y, Yang S, et al. Isolation, purification, characterization, and immunomodulatory activity analysis of α-glucans from Spirulina platensis. ACS Omega. 2021;6(33):21384–21394.
  • Balaraman H, Selvasembian R, Rangarajan V, et al. Sustainable and green engineering insights on deep eutectic solvents toward the extraction of nutraceuticals. ACS Sustain Chem Eng. 2021;9(34):11290–11313.
  • de F. Brito A, Silva S, de Oliveira CVC, et al. Spirulina platensis prevents oxidative stress and inflammation promoted by strength training in rats: dose-response relation study. Sci Rep. 2020;10(1):6382.
  • Taciak B, Białasek M, Braniewska A, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS One. 2018;13(6):e0198943.
  • Eleiwa NZH, Galal AAA, Abd El-Aziz RM, et al. Antioxidant activity of Spirulina platensis alleviates doxorubicin-induced oxidative stress and reprotoxicity in male rats. Orient Pharm Exp Med. 2018;18(2):87–95.
  • Chandrasekara A. Phenolic Acids, in: encycl. Food Chem. 2019;535–545. DOI:10.1016/B978-0-08-100596-5.22395-0
  • Li Y, Aiello G, Bollati C, et al. Phycobiliproteins from arthrospira platensis (Spirulina): a new source of peptides with dipeptidyl peptidase-IV inhibitory activity. Nutrients. 2020;12(3):794.
  • Dupre J, Ross SA, Watson D, et al. STIMULATION OF INSULIN SECRETION BY GASTRIC INHIBITORY POLYPEPTIDE IN MAN. 1. J Clin Endocrinol Metab. 1973;37(5):826–828.
  • Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig. 2010;1(1–2):8–23.
  • De Cerqueira AMM, De Souza Cardoso F. Nutritional Diseases. Trop. Dermatology. 2017;407–426. DOI:10.1016/B978-0-323-29634-2.00033-X
  • Chaubey P, Suvarna V, Sangave PC, et al. Nutritional management of diabetes—a critical review, in: bioact. food as diet. Interv Diabetes. 2019;289–308. DOI:10.1016/B978-0-12-813822-9.00019-9
  • Hatami E, Ghalishourani -S-S, Najafgholizadeh A, et al. The effect of spirulina on type 2 diabetes: a systematic review and meta-analysis. J Diabetes Metab Disord. 2021;20(1):883–892.
  • Mohiti S, Zarezadeh M, Naeini F, et al. Spirulina supplementation and oxidative stress and pro‐inflammatory biomarkers: a systematic review and meta‐analysis of controlled clinical trials, Clin. Exp Pharmacol Physiol. 2021;48(8):1059–1069.
  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease, Cold Spring Harb. Perspect Biol. 2014;6:a016295–a016295.
  • Irwin JW, Hedges N. Measuring lipid oxidation. Underst. Meas. Shelf-Life Food. 2004;289–316. DOI:10.1533/9781855739024.2.289
  • Nemoto-kawamura C, Hirahashi T, Nagai T, et al. Phycocyanin enhances secretary iga antibody response and suppresses allergic ige antibody response in mice immunized with antigen-entrapped biodegradable microparticles. J Nutr Sci Vitaminol. 2004;50(2):129–136.
  • Mao TK, Van de J, Gershwin ME. Effects of a spirulina -based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food. 2005;8(1):27–30.
  • Mathew B, Sankaranarayanan R, Nair PP, et al. Evaluation of chemoprevention of oral cancer with spirulina fusiformis. Nutr Cancer. 1995;24(2):197–202.
  • Shklar G, Schwartz J. Tumor necrosis factor in experimental cancer regression with alphatocopherol, beta-carotene, canthaxanthin and algae extract. Eur J Cancer Clin Oncol. 1988;24(5):839–850.
  • Schwartz J, Shklar G. Regression of experimental hamster cancer by beta carotene and algae extracts. J Oral Maxillofac Surg. 1987;45(6):510–515.
  • Akbarizare M, Ofoghi H, Hadizadeh M, et al. In vitro assessment of the cytotoxic effects of secondary metabolites from Spirulina platensis on hepatocellular carcinoma. Egypt Liver J. 2020;10(1):11.
  • Chou S-T, Hsiang C-Y, Lo H-Y, et al. Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice. BMC Complement Altern Med. 2017;17(1):121.
  • Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313–7352.
  • Lu -J-J, Bao J-L, Chen X-P, et al. Alkaloids isolated from natural herbs as the anticancer agents, evidence-based complement. Altern Med. 2012;1–12. DOI:10.1155/2012/485042
  • Zaid AAA, Hammad DM, Sharaf EM. Antioxidant and anticancer activity of Spirulina platensis Water Extracts. Int J Pharmacol. 2015;11(7):846–851.
  • Egusquiaguirre SP, Igartua M, Hernández RM, et al. Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research, Clin. Transl Oncol. 2012;14(2):83–93.
  • Koníčková R, Vaňková K, Vaníková J, et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol. 2014;13:273–283.
  • Chen T, Wong Y-S. Vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched spirulina platensis. J Agric Food Chem. 2008;56(12):4352–4358.
  • Homma Y, Goto Y. CHOLESTEROL LOWERING EFFECT OF SPIRULINA. Nutr Rep Int. 1988;37:1329–1337.
  • Serban M-C, Sahebkar A, Dragan S, et al. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations, Clin. Nutr. 2016;35:842–851.
  • Cicero AFG, Fogacci F, Stoian AP, et al. Nutraceuticals in the management of dyslipidemia: which, when, and for whom?. Curr Atheroscler Rep. 2021;23:57.
  • Nagaoka S, Shimizu K, Kaneko H, et al. A novel Protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr. 2005;135(10):2425–2430.
  • Zhao B, Cui Y, Fan X, et al. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS One. 2019;14(6):e0218543.
  • Pan H, She X, Wu H, et al. Long-term regulation of the local renin–angiotensin system in the myocardium of spontaneously hypertensive rats by feeding bioactive peptides derived from Spirulina platensis. J Agric Food Chem. 2015;63(35):7765–7774.
  • Wong MKS. Angiotensin Converting Enzymes. Handb. Horm. 2016;263-e29D–4. DOI:10.1016/B978-0-12-801028-0.00254-3
  • Fyhrquist F, Metsärinne K, Tikkanen I. Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J Hum Hypertens. 1995;9(5):S19–24.
  • Singh KD, Karnik SS. Angiotensin Receptors: structure, Function, Signaling and Clinical Applications. J Cell Signal. 2016;1. DOI:10.4172/jcs.1000111.
  • Simões E A, Silva KS, Ferreira A, et al. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. BrJ Pharmacol. 2013;169(3):477–492.
  • Sommella E, Carrizzo A, Merciai F, et al. Analysis of the metabolic switch induced by the spirulina peptide SP6 in high fat diet ApoE-/- mice model: a direct infusion FT-ICR-MS based approach. Journal of Pharmaceutical and Biomedical Analysis. 2021;195:113865.
  • Carrizzo A, Conte GM, Sommella E, et al. Novel potent decameric peptide of spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension. 2019;73(2):449–457.
  • Pendyala B, Patras A, Dash C. Phycobilins as potent food bioactive broad-spectrum inhibitors against proteases of SARS-CoV-2 and other coronaviruses: a preliminary study. Front Microbiol. 2021;12. DOI:10.3389/fmicb.2021.645713.
  • Pendyalaa B, Patrasa A. In silico Screening of Food Bioactive Compounds to Predict Potential Inhibitors of COVID-19. Main protease. 2020: 11–44
  • Chakravarti R, Singh R, Ghosh A, et al. A review on potential of natural products in the management of COVID-19. RSC Adv. 2021;11(27):16711–16735.
  • Petit L, Vernès L, Cadoret J-P. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J Appl Phycol. 2021;33(3):1579–1602.
  • Petit L, Vernès L, Cadoret J-P. Correction to: docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J Appl Phycol. 2021;33(3):1603–1604.
  • Hirata T, Tanaka M, Ooike M, et al. Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J Appl Phycol. 2000;12(3/5):435–439.
  • Zheng J, Inoguchi T, Sasaki S, et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol Integr Comp Physiol. 2013;304(2):R110–R120.
  • McCarty MF. Clinical potential of spirulina as a source of phycocyanobilin. J Med Food. 2007;10(4):566–570.
  • McCarty MF, Barroso-Aranda J, Contreras F. Practical strategies for targeting NF-kappaB and NADPH oxidase may improve survival during lethal influenza epidemics. Med Hypotheses. 2010;74(1):18–20.
  • Ratha SK, Renuka N, Rawat I, et al. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition. 2021;83:111089.
  • Chei S, Oh H-J, Song J-H, et al. Spirulina maxima extract prevents activation of the NLRP3 inflammasome by inhibiting ERK signaling. Sci Rep. 2020;10(1): 2075. DOI:10.1038/s41598-020-58896-6.
  • Kokou F, Makridis P, Kentouri M, et al. Antibacterial activity in microalgae cultures, Aquac. Res. 2012;43:1520–1527.
  • Duda-Chodak A. Impact of water extracts of Spirulina (WES) on bacteria, yeasts and molds. Acta Sci Pol Technol Aliment. n.d.;12:33–39.
  • Walker RD. Antimicrobial susceptibility testing and interpretation of results. In Giguere S., Prescott J. F., Baggot J. D., Walker R. D., Dowling P. M. (ed.). Antimicrob Ther Vet Med. 2006;12:11–25.
  • El-Baz FK, El-Senousy WM, El-Sayed AB, et al. In vitro antiviral and antimicrobial activities of Spirulina platensis extract. J Appl Pharm Sci. 2013;3:52–56.
  • Bougnoux, M. E., D. Diogo, C. Pujol, D. R. Soll,and C. d'Enfert.Molecular epidemiology and population dynamics in Candida albicans. In C. d'Enfert and B. Hube (ed.). Candida: comparative and functional genomics. Wymondham, United Kingdom: Caister Academic Press; 2007;51-70.
  • Aoi W, Marunaka Y. Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. Biomed Res Int. 2014;2014:1–8.
  • Zhong D, Zhang D, Xie T, et al. Biodegradable microalgae‐based carriers for targeted delivery and imaging‐guided therapy toward lung metastasis of breast cancer. Small. 2020;16(20):2000819.
  • Liu Q, Huang Y, Zhang R, et al. Medical application of Spirulina platensis derived C-phycocyanin, evidence-based complement. Altern Med. 2016;1–14. DOI:10.1155/2016/7803846
  • Swietach P, Vaughan-Jones RD, Harris AL, et al. The chemistry, physiology and pathology of pH in cancer, Philos. Trans R Soc B Biol Sci. 2014;369(1638):20130099.
  • Falquet J. The nutritional aspects of spirulina. Antenna Technol. 1988;40–41.
  • De Oliveira MACL, Monteiro MPC, Robbs PG, et al. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures, Aquac. Int. 1999;7:261–275.
  • Gershwin ME, Belay A. Spirulina in human nutrition and health. CRC Press. 2007. DOI:10.1201/9781420052572
  • Sotiroudis T, Sotiroudis G. Health aspects of Spirulina (Arthrospira) microalga food supplement. J Serbian Chem Soc. 2013;78(3):395–405.
  • Xu L, Liang Y, Xu X, et al. Blood cell-derived extracellular vesicles: diagnostic biomarkers and smart delivery systems. Bioengineered. 2021;12(1):7929–7940.
  • Shaw H. Intramuscular injection, Nurs. Stand. 2015;30:61–62.
  • Nicoll LH, Hesby A. Intramuscular injection: an integrative research review and guideline for evidence-based practice, Appl. Nurs Res. 2002;15:149–162.
  • Donaldson C, Green J. Using the ventrogluteal site for intramuscular injections. Nurs Times. n.d.;101:36–38.
  • Bolger GT. Routes of Drug Administration ☆, in: ref. Modul Biomed Sci. 2018. DOI:10.1016/B978-0-12-801238-3.11099-2
  • Zhou Q, Jin J, Zhu L, et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection, Patient Prefer. Adherence. 2015;923. DOI:10.1007/s13596-018-0314-1
  • Lee M-K. Clinical usefulness of liposomal formulations in cancer therapy: lessons from the experiences of doxorubicin. J Pharm Investig. 2019;49(2):203–214.
  • Lee SH, Bajracharya R, Min JY, et al Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics. 2020;12(1):68. 10.3390/pharmaceutics12010068
  • Seo J, Kim M-J, Jeon S-O, et al. Enhanced topical delivery of fish scale collagen employing negatively surface-modified nanoliposome. J Pharm Investig. 2018;48(3):243–250.
  • Guo Y, Zong S, Pu Y, et al. Advances in pharmaceutical strategies enhancing the efficiencies of oral colon-targeted delivery systems in inflammatory bowel disease. Molecules. 2018;23(7):1622.
  • Brako F, Mahalingam S, Rami-Abraham B, et al. Application of nanotechnology for the development of microbicides. Nanotechnology. 2017;28(5):052001.
  • van Swaay D, DeMello A. Microfluidic methods for forming liposomes. Lab Chip. 2013;13(5):752.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6. DOI:10.3389/fphar.2015.00286.
  • Thistlethwaite AJ, Leeper DB, Moylan DJ, et al. pH distribution in human tumors. Int J Radiat Oncol. 1985;11(9):1647–1652.
  • Kallinowski F, Vaupel P. pH distributions in spontaneous and isotransplanted rat tumours. Br J Cancer. 1988;58(3):314–321.
  • Martin GR, Jain RK. Noninvasive measurement of interstitial ph profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 1994;54(21):5670–5674.
  • Yamagata M, Hasuda K, Stamato T, et al. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer. 1998;77(11):1726–1731.
  • Parkins C, Stratford M, Dennis M, et al. The relationship between extracellular lactate and tumour pH in a murine tumour model of ischaemia-reperfusion, Br. J Cancer. 1997;75(3):319–323.
  • Leeper DB, Engin K, Thistlethwaite AJ, et al. Human tumor extracellular pH as a function of blood glucose concentration. Int J Radiat Oncol. 1994;28:935–943.
  • Shen Y, Tang H, Radosz M, et al. pH-responsive nanoparticles for cancer drug delivery. in. 2008;183–216. DOI:10.1007/978-1-59745-210-6_10
  • Garin-Chesa P, Campbell I, Saigo PE, et al. Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol. 1993;142(2):557–567.
  • Wang G, Reed E, Li Q. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (Review. Oncol Rep. 2004. DOI:10.3892/or.12.5.955
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 2013;8(9):1509–1528.
  • Qi X-R, Zhao Z. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomedicine. 2011;3087. DOI:10.2147/IJN.S25399
  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–146.
  • Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9(2):E128–E147.
  • Vemuri S, Rhodes C. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv. 1995;70(2):95–111.
  • Mudalige T, Qu H, Van Haute D, et al. Characterization of Nanomaterials. Nanomater Food Appl. 2019;313–353. DOI:10.1016/B978-0-12-814130-4.00011-7
  • Benne N, Leboux RJT, Glandrup M, et al. Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses. J Control Release. 2020;318:246–255.
  • Smith BA, Ware BR. Apparatus and methods for laser doppler electrophoresis. Contemp. Top. Anal. Clin. Chem. 1978;29–54. DOI:10.1007/978-1-4615-6731-8_2
  • Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.
  • Liu Y, Yang F, Xiao W, et al. Discovery of specific targeting ligands as the biomarkers for colorectal cancer, Color. Cancer. 2017;6:121–130.
  • Zhai G, Wu J, Yu B, et al. A transferrin receptor-targeted liposomal formulation for docetaxel. J Nanosci Nanotechnol. 2010;10(8):5129–5136.
  • Sakaguchi N, Kojima C, Harada A, et al. Effect of Transferrin As a Ligand of pH-Sensitive Fusogenic Liposome−Lipoplex Hybrid Complexes. Bioconjug Chem. 2008;19(8):1588–1595.
  • Chopra A. Transferrin-coated gadolinium-labeled human serum albumin nanoparticles. 2004. http://www.ncbi.nlm.nih.gov/pubmed/23700643.
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.
  • Arias JL. Drug targeting strategies in cancer treatment: an overview. Mini-Reviews Med Chem. 2011;11(1):1–17.
  • Dass CR. Drug Delivery in Cancer Using Liposomes. In Jain, K.K. (ed). Drug Delivery in Cancer Using Liposomes. 2008;437:177–182. Doi:10.1007/978-1-59745-210-6_9.
  • Thareja R, Singh J, Bansal P. <atl>Computational tools in cheminformatics, in. Pharm Sci. 2021;105–137. DOI:10.1016/B978-0-12-821748-1.00012-9
  • Rasala BA, Mayfield SP. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bugs. 2011;2(1):50–54.
  • Taunt HN, Stoffels L, Purton S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered. 2018;9(1):48–54.
  • Németh Z, Pallagi E, Dobó DG, et al. A proposed methodology for a risk assessment-based liposome development process. Pharmaceutics. 2020;12(12):1–13.
  • Shockcor JP. HPLC–NMR, Pharmaceutical Applications ☆. Encycl. Spectrosc. Spectrom. 2017;141–151. DOI:10.1016/B978-0-12-803224-4.00377-0
  • Nagarsenkar MS, Dhawan VV. Parenteral preparations. Remington. 2021;577–603. DOI:10.1016/B978-0-12-820007-0.00029-5
  • Savla R, Browne J, Plassat V, et al. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017;43(11):1743–1758.
  • Nahler G. Drug Product. 2009.
  • Hochlehnert A, HendrikSchultz J, and Möltner A, et al. Electronic acquisition of OSCE performance using tablets. GMS Z Med Ausbild. 32(4):2015.
  • Prescott LF. Pathological and physiological factors affecting drug absorption, distribution, elimination, and response in man. Concepts Biochem. Pharmacol. 1975;234–257. DOI:10.1007/978-3-642-46314-3_9
  • Şengel-Türk CT, Hasçiçek C, and Gönül N. Colon Targeted Drug Delivery Systems. Journal of Faculty of Pharmacy of Ankara University. Fakültesi Derg. 2006;35(2):125–148.doi: 10.1501/Eczfak_0000000055.
  • Fallingborg J. Intraluminal pH of the human gastrointestinal tract, pubmed. Dan Med Bull. 1999;46:183–196.
  • Welling PG. Influence of food and diet on gastrointestinal drug absorption: a review. J Pharmacokinet Biopharm. 1977;5(4):291–334.
  • Mayersohn M. Drug Absorption. J Clin Pharmacol. 1987;27(9):634–638.
  • Hale T, Abbey J. Drug transfer during breast-feeding. Fetal Neonatal Physiol. 2017;239–248.e5. DOI:10.1016/B978-0-323-35214-7.00023-8
  • Treyer A, Mateus A, Wiśniewski JR, et al. Intracellular drug bioavailability: effect of neutral lipids and phospholipids. Mol Pharm. 2018;15:2224–2233.
  • Harrison K. Introduction to polymeric drug delivery systems. Biomed Polym. 2007;33–56. DOI:10.1533/9781845693640.33
  • Read NW, Sugden K. Gastrointestinal dynamics and pharmacology for the optimum design of controlled-release oral dosage forms. Crit Rev Ther Drug Carrier Syst. 1988;4(3):221–263.
  • Tahara K, Yamamoto K, Nishihata T. Overall mechanism behind matrix sustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910. J Control Release. 1995;35(1):59–66.
  • Zu Y, Luo Y, Ahmed SU. Effect of neutralization of poly(methacrylic acid-co-ethyl acrylate) on drug release from enteric-coated pellets upon accelerated storage. Drug Dev Ind Pharm. 2007;33(4):457–473.
  • Ganesh S, Moreno M, and Liu J, et al. Sensor network for continuous tablet manufacturing. San Diego, California, USA. 2149–2154. 10.1016/B978-0-444-64241-7.50353-0.
  • Dijkhuis-Bouwman AM. The role of particulates in film coating of pharmaceutical tablets. 2018;373–398. Doi:10.1007/978-3-319-94174-5_11
  • Newmark HL, Lupton JR. Determinants and consequences of colonic luminal pH: implications for colon cancer, Nutr. Cancer. 1990;14:161–173.
  • Gunes S, Tamburaci S, Dalay MC, et al. vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharm Biol. 2017;55(1):1824–1832.
  • Syarina PNA, Karthivashan G, Abas F, et al. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells. EXCLI J. 2015;14:385–393.
  • Cherdkiatikul T, Suwanwong Y. Production of the α and β subunits of spirulina allophycocyanin and C-phycocyanin in escherichia coli. J Biomol Screen. 2014;19(6):959–965.
  • Böcker L, Ortmann S, Surber J, et al. Biphasic short time heat degradation of the blue microalgae protein phycocyanin from Arthrospira platensis, Innov. Food Sci Emerg Technol. 2019;52:116–121.
  • Jespersen L, Strømdahl LD, Olsen K, et al. Heat and light stability of three natural blue colorants for use in confectionery and beverages, Eur. Food Res Technol. 2005;220(3–4):261–266.
  • Chen Y. Packaging Selection for Solid Oral Dosage Forms. Dev. Solid Oral Dos. Forms. 2017;637–651. DOI:10.1016/B978-0-12-802447-8.00023-6
  • Pellett JD, Dwaraknath S, Nauka E, et al. Accelerated Predictive Stability (APS) Applications: packaging Strategies for Controlling Dissolution Performance. Accel Predict. 2018:383–401. DOI:10.1016/B978-0-12-802786-8.00018-8.
  • National Pharmaceutical Regulatory Agency. Drug registration regulation, drug regist. Guid Doc. 2020;1–29.