1,222
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Molecular characterization of SUT Gene Family in Solanaceae with emphasis on expression analysis of pepper genes during development and stresses

, , , , , , & show all
Pages 14780-14798 | Received 28 Apr 2022, Accepted 17 Jun 2022, Published online: 19 Oct 2022

References

  • Liesche J. Sucrose transporters and plasmodesmal regulation in passive phloem loading. J Integr Plant Biol. 2017;59(5):311–321.
  • Rolland F, Baena-Gonzalez E, Sheen J. SUGAR sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006;57(1):675–709.
  • Poudel K, Luo X, Chen L, et al. Identification of the SUT gene family in Pomegranate (Punica granatum L.) and functional analysis of PgL0145810.1. Int J Mol Sci. 2020;21(18):6608.
  • Lalonde S, Wipf D, Frommer WB. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol. 2004;55(1):341–372.
  • Yadav UP, Ayre BG, Bush DR. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. Front Plant Sci. 2015;6:275.
  • Gautam A, Kumar N, Dubey AK, et al. Sucrose plays key role in amelioration of arsenic induced phytotoxicity through modulating phosphate and silicon transporters, physiological and biochemical responses in C3 (Oryza sativa L.) and C4 (Zea mays L). Environ Exp Bot. 2020;171:103930.
  • Aoki N, Hirose T, Scofield GN, et al. The sucrose transporter gene family in rice. Plant Cell Physiol. 2003;44(3):223–232.
  • Rae AL, Grof CPL, Casu RE, et al. Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation. Field Crops Res. 2005;92(2):159–168.
  • Ma QJ, Sun MH, Liu YJ, et al., Molecular cloning and functional characterization of the apple sucrose transporter gene MdSUT2. 2016;Plant Physiology & Biochemistry. 109:442–451.
  • Reinders A, Sivitz AB, Ward JM. Evolution of plant sucrose uptake transporters. Front Plant Sci. 2012;3:22.
  • Ayre BG. Membrane-Transport Systems for Sucrose in Relation to Whole-Plant Carbon Partitioning. Mol Plant. 2011;4(3):377–394.
  • Weise A, Barker L, Kühn C, et al. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell. 2000;12(8):1345–1355.
  • Liu Y, Ying X, Yang Y, et al. Molecular cloning and expression analysis of turnip (Brassica rapa var. rapa) sucrose transporter gene family. Plant Divers. 2017;39(3):123–129.
  • Lemoine R. Sucrose transporters in plants: update on function and structure. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2000;1465:246–262.
  • Kühn C, Grof CP. Sucrose transporters of higher plants. Curr Opin Plant Biol. 2010;13(3):287–297.
  • Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol Plant. 2011;4(4):641–662.
  • Stolz J, Ludwig A, Stadler R, et al. Structural analysis of a plant sucrose carrier using monoclonal antibodies and bacteriophage lambda surface display. FEBS Letter. 1999;453(3):375–379.
  • Riesmeier JW, Willmitzer L, Frommer WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992;11(13):4705–4713.
  • Berthier A, Meuriot F, Dédaldéchamp F, et al. Identification of a new sucrose transporter in ryegrass (LpSUT2): effect of defoliation and putative fructose sensing. Plant Physiol Biochem. 2014;84:32–44.
  • Slewinski TL, Meeley R, Braun DM. Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot. 2010;60(3):881–892.
  • Peng CC, Xu YH, Xi RC, et al. Expression, subcellular localization and phytohormone stimulation of a functional sucrose transporter (MdSUT1) in apple fruit. Sci Hortic. 2011;128(3):206–212.
  • Carpaneto A, Geiger D, Bamberg E, et al. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem. 2005;280(22):21437.
  • Schulz A, Beyhl D, Marten I, et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J. 2011;68:129–136.
  • Williams LE, Lemoine R, Sauer N. Sugar transporters in higher plants—A diversity of roles and complex regulation. Trends Plant Sci. 2000;5:283–290.
  • Guo PA, Zheng YC, He YY, et al. Isolation and functional characterization of SUCROSE SYNTHASE 1 and SUCROSE TRANSPORTER 2 promoters from ramie (Boehmeria nivea L. Gene. 2019;685:114–124.
  • Weschke W, Panitz R, Sauer N, et al. Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J. 2000;21(5):455–467.
  • Doidy J, van Tuinen D, Lamotte O, et al. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards Arbuscular Mycorrhizal Fungi. Mol Plant. 2012;5:1346–1358.
  • Li CL, Meng D, Piñeros MA, et al. A sugar transporter takes up both hexose and sucrose for sorbitol-modulated in vitro pollen tube growth in apple. Plant Cell. 2020;32(2):449–469.
  • Li F, Wu B, Qin X, et al. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L. Gene. 2014;546(2):336–341.
  • Lu MZ, Snyder R, Grant J, et al. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. Plant J. 2020;101(1):217–236.
  • Ishibashi Y, Okamura K, Miyazaki M, et al., Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environmental & Experimental Botany. 2014;97:49–54.
  • Wang LF, Qi XX, Huang XS, et al., Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri enhances sucrose content in Solanum lycopersicum fruit. Plant Physiology & Biochemistry. 2016;105:150–161.
  • Sivitz AB, Reinders A, Johnson ME, et al. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol. 2007;143(1):188–198.
  • Sun F, Zhu L, Wang X, et al. Sucrose transportation control mediates the fresh-keeping effects of burdock fructooligosaccharide in ‘Crimson Seedless’ grapes. Food Chem. 2020;332:127437.
  • Zhu M, Yu J, Tang W, et al. Role of calcium in regulating anthocyanin accumulation in ‘Manicure Finger’ grape berries. Sci Hortic. 2019;256:108585.
  • Shakya R, Sturm A. Characterization of source- and sink-specific sucrose/H+ symporters from carrot. Plant Physiol. 1998;118(4):1473–1480.
  • Miyazaki M, Araki M, Okamura K, et al. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. J Plant Physiol. 2013;170(18):1579–1584.
  • Noiraud N, Delrot S, Lemoine R. The sucrose transporter of Celery. identification and expression during salt stress. Plant Physiol. 2000;122(4):1447–1455.
  • Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–763.
  • Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402.
  • Bjellqvist B, Basse B, Olsen E, et al. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis. 1994;15(1):529–539.
  • Chen C, Chen H, Zhang Y, et al. TBtools: an Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant. 2020;13(8):1194–1202.
  • Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2003;1:2–3.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms Molecular biology and evolution. Molecular Biology and Evolution. 2018;35(6):1547.
  • Hu B, Jin J, Guo A-Y, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–1297.
  • Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity. 2002;93(1):77–78.
  • Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–327.
  • Howe EA, Sinha R, Schlauch D, et al. RNA-Seq analysis in MeV. Bioinformatics. 2011;27(22):3209–3210.
  • Sauer N, Ludwig A, Knoblauch A, et al. AtSUC8 and AtSUC9 encode functional sucrose transporters, but the closely related AtSUC6 and AtSUC7 genes encode aberrant proteins in different Arabidopsis ecotypes. Plant J. 2004;40(1):120–130.
  • Sylvie L, Wolf F. SUT sucrose and MST monosaccharide transporter inventory of the Selaginella genome. Front Plant Sci. 2012;3:24.
  • Lubkowitz M. The Oligopeptide Transporters: a small gene family with a diverse group of substrates and functions? Mol Plant. 2011;4(3):407–415.
  • Fan K, Mao ZJ, Ye FT, et al. Genome-wide identification and molecular evolution analysis of the heat shock transcription factor (HSF) gene family in four diploid and two allopolyploid Gossypium species. Genomics. 2021;113(5):3112–3127.
  • Xu G, Guo C, Shan H, et al. Divergence of duplicate genes in exon-intron structure. Proc Nat Acad Sci. 2012;109(4):1187–1192.
  • Ting F, Yuan P, Rao Y, et al. Genome-wide identification and expression analysis of sugar transporter (ST) gene family in Longan (Dimocarpus longan L.). Plants. 2020;9(3):342.
  • Durand M, Mainson D, Porcheron B, et al. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta. 2018;247(3):587–611.
  • Doidy J, Grace E, Kühn C, et al. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012;17(7):413–422.
  • Mehan MR, Freimer NB, Ophoff RA. A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Hum Genomics. 2004;1(5):335–344.
  • Wang J, Zhang YX, Xu N, et al. Genome-wide identification of CK gene family suggests functional expression pattern against Cd2+ stress in Gossypium hirsutum L. Int J Biol Macromol. 2021;188:272–282.
  • Maere S, De BS, Raes J, et al. Modeling gene and genome duplications in eukaryotes. Proc Nat Acad Sci. 2005;102(15):5454–5459.
  • Blanc G, Wolfe KH. Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution[W]. Plant Cell. 2004;16(7):1679–1691.
  • Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci. 2013;38(3):151–159.
  • Tang J, Zhang BL, Wang ZH, et al. Cloning and expression analysis of PpSUT2 encoding a sucrose transporter in pear. Genet Mol Res. 2014;13(4):8932–8945.
  • Zhang J, Lv J, Dawuda MM, et al. Appropriate ammonium-nitrate ratio improves nutrient accumulation and fruit quality in pepper (Capsicum annuum L.). Agronomy. 2019;9(11):683.
  • Akladious SA, Mohamed HI. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Hortic. 2018;236(16):244–250.
  • H JJ, L K, Y B, et al. Genome-Wide Analysis and Expression Profiling of the SUC and SWEET Gene Families of Sucrose Transporters in Oilseed Rape (Brassica napus L.). Front Plant Sci. 2016;7:1464.
  • Martínez IM, Chrispeels MJ. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell. 2003;15(12):561–576.
  • Li CN, Srivastava MK, Nong Q, et al. Molecular cloning and characterization of SoNCED, a novel gene encoding 9-cis-epoxycarotenoid dioxygenase from sugarcane (Saccharum officinarum L.). Genes Genomics. 2013;35(1):101–109.
  • Yalpani N, Enyedi AJ, León J, et al. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta. 1994;193(3):372–376.
  • Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell. 2009;136(6):1005–1016.
  • Bihmidine S, Hunter CT, Johns CE, et al. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. Front Plant Sci. 2013;4:177.
  • Zhang HP, Zhang SJ, Qin GH, et al. Molecular cloning and expression analysis of a gene for sucrose transporter from pear (Pyrus bretschneideri Rehd.) fruit. Plant Physiol Biochem. 2013;73:63–69.
  • Lim JD, Cho JI, Park YI, et al. Sucrose transport from source to sink seeds in rice. Physiol Plant. 2006;126(4):572–584.
  • Milne R, Byrt J, C S, et al. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Front Plant Sci. 2013;4:223.
  • Carpaneto A, Geiger D, Bamberg E, et al. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem. 2005;280(22):21437–21443.
  • Berthier A, Desclos M, Amiard V, et al. Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity. Plant Cell Physiol. 2009;50(7):1329–1344.
  • Liesche J, Schulz A, Krügel U, et al. Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements. Plant Signal Behav. 2008;3:1136–1137.
  • Cai Y, Jing Y, Li Q, et al. Sucrose transporters of resistant grapevine are involved in stress resistance. Plant Mol Biol. 2019;100(1):111–132.
  • Gong X, Liu ML, Zhang LJ, et al. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiol Plant. 2015;153(1):119–136.
  • Siahpoosh MR, Sanchez DH, Schlereth A, et al. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci. 2012;182:101–111.
  • Wang D, Liu H, Wang H, et al. A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in Sweetpotato. BMC Plant Biol. 2020;20(1):1–15.
  • Ping C, Hsiao HH, Chen HJ, et al. Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiologiae Plantarum. 2014;36(1):217–229.
  • Miyazaki M, Araki M, Okamura K, et al. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. J Plant Physiol. 2013;170(18):1579–1584.
  • Q.j M, M.h S, Kang H, et al. A CIPK protein kinase targets sucrose transporter MdSUT2. 2 at Ser254 for phosphorylation to enhance salt tolerance. Plant Cell Environ. 2019;42(3):918–930.
  • Xue GP, McIntyre CL, Glassop D, et al. Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Biol. 2008;67(3):197–214.