1,289
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adapted feeding strategies in fed-batch fermentation improve sugar delivery and ethanol productivity

, , &
Article: 2250950 | Received 22 Mar 2023, Accepted 25 May 2023, Published online: 01 Sep 2023

References

  • IEA [Internet]. World energy outlook 2020. Paris: International Energy Agency; 2020. [cited January 11, 2022]. Available from: https://www.iea.org/reports/world-energy-outlook-2020, License: CC BY 4.0
  • Ruan R, Zhang Y, Chen P, et al. Chapter 1-Biofuels: introduction. In: Pandey A, Larroche C, and Dussap C, editors. Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. London, United Kingdom: Academic Press; 2019. p. 3–13.
  • Aditiya H, Mahlia TMI, Chong W, et al. Second generation bioethanol production: a critical review. Renew Sustain Energ Rev. 2016;66:631–653. doi: 10.1016/j.rser.2016.07.015
  • Zabed H, Sahu J, Suely A, et al. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energ Rev. 2017;71:475–501. doi: 10.1016/j.rser.2016.12.076
  • Dalena F, Senatore A, Iulianelli A, et al. Ethanol from biomass: future and perspectives. Ethanol: Elsevier; 2019. p. 25–59.
  • Karp SG, Medina JD, Letti LA, et al. Bioeconomy and biofuels: the case of sugarcane ethanol in Brazil. Biofuels, Bioprod Bioref. 2021;15(3):899–912. doi: 10.1002/bbb.2195
  • Rudel TK. Food versus fuel: extractive industries, insecure land tenure, and gaps in world food production. World Dev. 2013;51:62–70. doi: 10.1016/j.worlddev.2013.05.015
  • Dos Santos LV, de Barros Grassi MC, Gallardo JCM, et al. Second-generation ethanol: the need is becoming a reality. Ind Biotechnol. 2016;12(1):40–57. doi: 10.1089/ind.2015.0017
  • Toor M, Kumar SS, Malyan SK, et al. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere. 2020;242:125080. doi: 10.1016/j.chemosphere.2019.125080
  • Vásquez MP, da Silva JNC, de Souza MB, et al. Appl Biochem Biotecnol. 2007;137:141–153. doi: 10.1007/978-1-60327-181-3_13
  • Oberoi HS, Vadlani PV, Saida L, et al. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manage. 2011;31(7):1576–1584. doi: 10.1016/j.wasman.2011.02.007
  • Vargas F, Domínguez E, Vila C, et al. Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Bioresour Technol. 2015;191:263–270. doi: 10.1016/j.biortech.2015.05.035
  • Siriwong T, Laimeheriwa B, Aini UN, et al. Cold hydrolysis of cassava pulp and its use in simultaneous saccharification and fermentation (SSF) process for ethanol fermentation. J Biotechnol. 2019;292:57–63. doi: 10.1016/j.jbiotec.2019.01.003
  • da Costa Nogueira C, de Araújo Padilha CE, de Jesus AA, et al. Pressurized pretreatment and simultaneous saccharification and fermentation with in situ detoxification to increase bioethanol production from green coconut fibers. Ind Crop Prod. 2019;130:259–266. doi: 10.1016/j.indcrop.2018.12.091
  • Akhtar N, Goyal D, Goyal A. Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energ Convers Manage. 2017;141:133–144. doi: 10.1016/j.enconman.2016.06.081
  • Gao Y, Xu J, Yuan Z, et al. Ethanol production from sugarcane bagasse by fed‐batch simultaneous saccharification and fermentation at high solids loading. Energy Sci Eng. 2018;6(6):810–818. doi: 10.1002/ese3.257
  • Koppram R, Olsson L. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels. 2014;7(1):1–9. doi: 10.1186/1754-6834-7-54
  • Mazaheri D, Orooji Y, Mazaheri M, et al. Bioethanol production from pomegranate peel by simultaneous saccharification and fermentation process. Biomass Convers Biorefinery. 2021;1–9. doi: 10.1007/s13399-021-01562-2
  • Chohan NA, Aruwajoye G, Sewsynker-Sukai Y, et al. Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment. Renewable Energy. 2020;146:1031–1040. doi: 10.1016/j.renene.2019.07.042
  • Russell I. Chapter 9 - Understanding yeast fundamentals. In: Jacques K, Lyons T, and Kelsall D, editors The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries. 4 ed. Nottingham, United Kingdom: Nottingham University Press; 2003. p. 531–537.
  • Zabed H, Faruq G, Sahu JN, et al. Bioethanol production from fermentable sugar juice. Sci World J. 2014;2014:1–12. doi: 10.1155/2014/957102
  • Lim HC, Shin HS. Fed-batch cultures: principles and applications of semi-batch bioreactors. Cambridge University Press; 2013.
  • Chang Y-H, Chang K-S, Huang C-W, et al. Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production. Fuel. 2012;97:166–173. doi: 10.1016/j.fuel.2012.02.006
  • Phukoetphim N, Salakkam A, Laopaiboon P, et al. Improvement of ethanol production from sweet sorghum juice under batch and fed-batch fermentations: effects of sugar levels, nitrogen supplementation, and feeding regimes. Electron J Biotechnol. 2017;26:84–92. doi: 10.1016/j.ejbt.2017.01.005
  • Siqueira PF, Karp SG, Carvalho JC, et al. Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresour Technol. 2008;99(17):8156–8163. doi: 10.1016/j.biortech.2008.03.037
  • Kang KE, Jeong J-S, Kim Y, et al. Development and economic analysis of bioethanol production facilities using lignocellulosic biomass. J Biosci Bioeng. 2019;128(4):475–479. doi: 10.1016/j.jbiosc.2019.04.004
  • Amorim HV, Lopes ML, de Castro Oliveira JV, et al. Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol. 2011;91(5):1267–1275. doi: 10.1007/s00253-011-3437-6
  • Azhar SHM, Abdulla R, Jambo SA, et al. Yeasts in sustainable bioethanol production: areview. Biochem Biophys Rep. 2017;10:52–61. doi: 10.1016/j.bbrep.2017.03.003
  • Lee J, Lee SY, Park S, et al. Control of fed-batch fermentations. Biotechnol Adv. 1999;17(1):29–48. doi: 10.1016/S0734-9750(98)00015-9
  • Nilsson A, Taherzadeh M, Lidén G. On-line estimation of sugar concentration for control of fed-batch fermentation of lignocellulosic hydrolyzates by Saccharomyces cerevisiae. Bioprocess Biosyst Eng. 2002;25(3):183–191. doi: 10.1007/s00449-002-0293-x
  • Wang J, Chae M, Sauvageau D, et al. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept. Biotechnol Biofuels. 2017;10(1):193. doi: 10.1186/s13068-017-0879-9
  • Wang J, Chae M, Bressler DC, et al. Improved bioethanol productivity through gas flow rate-driven self-cycling fermentation. Biotechnol Biofuels. 2020;13(1):14. doi: 10.1186/s13068-020-1658-6
  • Ingledew WM. Continuous fermentation in the fuel alcohol industry: how does the technology affect yeast. In: Jacques KA, Lyons TP, Kelsall DR, editors. The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries. 4 ed. Nottingham, UK:Nottingham University Press; 2003. p. 135–143.
  • Karapatsia A, Penloglou G, Chatzidoukas C, et al. Fed-batch Saccharomyces cerevisiae fermentation of hydrolysate sugars: adynamic model-based approach for high yield ethanol production. Biomass Bioenergy. 2016;90:32–41. doi: 10.1016/j.biombioe.2016.03.021
  • Parashar A, Jin Y, Mason B, et al. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. J Dairy Sci. 2016;99(3):1859–1867. doi: 10.3168/jds.2015-10059
  • Bhargava S, Nandakumar M, Roy A, et al. Pulsed feeding during fed‐batch fungal fermentation leads to reduced viscosity without detrimentally affecting protein expression. Biotechnol Bioeng. 2003;81(3):341–347. doi: 10.1002/bit.10481
  • Unrean P, Nguyen NH. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Appl Biochem Biotechnol. 2013;169(6):1895–1909. doi: 10.1007/s12010-013-0100-y
  • Chang Y-H, Chang K-S, Chen C-Y, et al. Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation. 2018;4(2):45. doi: 10.3390/fermentation4020045
  • Verstrepen K, Derdelinckx G, Verachtert H, et al. Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol. 2003;61(3):197–205. doi: 10.1007/s00253-002-1200-8
  • Bauer FF, Govender P, Bester MC. Yeast flocculation and its biotechnological relevance. Appl Microbiol Biotechnol. 2010;88(1):31–39. doi: 10.1007/s00253-010-2783-0
  • Flevaris K, Chatzidoukas C. Optimal fed-batch bioreactor operating strategies for the microbial production of lignocellulosic bioethanol and exploration of their economic implications: a step forward towards sustainability and commercialization. J Clean Prod. 2021;295:126384. doi: 10.1016/j.jclepro.2021.126384
  • D’Amato D, Corbo MR, Nobile MAD, et al. Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. Int J Food Sci Technol. 2006;41(10):1152–1157. doi: 10.1111/j.1365-2621.2005.01128.x
  • Ávila-Reyes S, Camacho-Díaz B, Acosta-García M, et al. Effect of salt and sugar osmotic stress on the viability and morphology of Saccharomyces boulardii. IJEAB. 2016;1(3):593–602. doi: 10.22161/ijeab/1.3.43
  • Sonego J, Lemos D, Cruz A, et al. Optimization of fed-batch fermentation with in situ ethanol removal by CO2 stripping. Energ Fuel. 2018;32(1):954–960. doi: 10.1021/acs.energyfuels.7b02979
  • Koppram R, Nielsen F, Albers E, et al. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels. 2013;6(1):1–10. doi: 10.1186/1754-6834-6-2
  • Zacchi G, Axelsson A. Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnol Bioeng. 1989;34(2):223–233. doi: 10.1002/bit.260340211
  • Fujii T, Murakami K, Endo T, et al. Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method. Bioprocess Biosyst Eng. 2014;37(4):749–754. doi: 10.1007/s00449-013-1032-1
  • Ahmad Q, Manzoor M, Chaudhary A, et al. Bench‐scale fermentation for second generation ethanol and hydrogen production by Clostridium thermocellum DSMZ 1313 from sugarcane bagasse. Environ Prog Sustain Energy. 2021;40(2):e13516. doi: 10.1002/ep.13516
  • Bai F, Anderson W, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv. 2008;26(1):89–105. doi: 10.1016/j.biotechadv.2007.09.002
  • Stanley D, Bandara A, Fraser S, et al. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol. 2010;109(1):13–24. doi: 10.1111/j.1365-2672.2009.04657.x
  • Liu C-G, Xiao Y, Xia X-X, et al. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv. 2019;37(3):491–504. doi: 10.1016/j.biotechadv.2019.03.002
  • Mussatto SI, Dragone G, Guimarães PM, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010;28(6):817–830. doi: 10.1016/j.biotechadv.2010.07.001
  • Alfenore S, Molina-Jouve C, Guillouet S, et al. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol. 2002;60(1):67–72. doi: 10.1007/s00253-002-1092-7
  • Narisetty V, Nagarajan S, Gadkari S, et al. Process optimization for recycling of bread waste into bioethanol and biomethane: a circular economy approach. Energ Convers Manage. 2022;266:115784. doi: 10.1016/j.enconman.2022.115784
  • Laopaiboon L, Thanonkeo P, Jaisil P, et al. Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol. 2007;23(10):1497–1501. doi: 10.1007/s11274-007-9383-x
  • Lemos DA, Sonego JL, Cruz AJ, et al. Improvement of ethanol production by extractive fed-batch fermentation in a drop column bioreactor. Bioprocess Biosyst Eng. 2020;43(12):2295–2303. doi: 10.1007/s00449-020-02414-5
  • Seo H-B, Kim SS, Lee H-Y, et al. High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol Bioprocess Eng. 2009;14(5):591–598. doi: 10.1007/s12257-008-0274-2
  • Hewitt CJ, Nienow AW. The scale‐up of microbial batch and fed‐batch fermentation processes. Adv Appl Microbiol. 2007;62:105–135. doi: 10.1016/S0065-2164(07)62005-X
  • Pinto AS, Pereira SC, Ribeiro MP, et al. Monitoring of the cellulosic ethanol fermentation process by near-infrared spectroscopy. Bioresour Technol. 2016;203:334–340. doi: 10.1016/j.biortech.2015.12.069
  • Cozzolino D. State-of-the-art advantages and drawbacks on the application of vibrational spectroscopy to monitor alcoholic fermentation (beer and wine). Appl Spectrosc Rev. 2016;51(4):302–317. doi: 10.1080/05704928.2015.1132721
  • Veale EL, Irudayaraj J, Demirci A. An on‐line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnol Prog. 2007;23(2):494–500. doi: 10.1021/bp060306v
  • Thatipamala R, Rohani S, Hill G. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng. 1992;40(2):289–297. doi: 10.1002/bit.260400213
  • Zhang Q, Wu D, Lin Y, et al. Substrate and product inhibition on yeast performance in ethanol fermentation. Energ Fuel. 2015;29(2):1019–1027. doi: 10.1021/ef502349v