1,277
Views
18
CrossRef citations to date
0
Altmetric
Original Reports

The Suppression of Instabilities via Biphase Interfaces During Bulk Fabrication of Nanograined Zr

, , , , , , , & show all
Pages 50-57 | Received 07 May 2014, Accepted 29 Jun 2014, Published online: 09 Sep 2014

References

  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33:223–315. doi: 10.1016/0079-6425(89)90001-7
  • Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–610. doi: 10.1126/science.1167641
  • Misra A. Nanostructure control of materials. Cambridge: Woodhead Publishing Company; 2006.
  • Wang YM, Chen MW, Zhou FH, Ma E. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915. doi: 10.1038/nature01133
  • Zhu YT, Liao XZ. Nanostructured metals - retaining ductility. Nature Mater. 2004;3:351–352. doi: 10.1038/nmat1141
  • Misra A, Hoagland RG. Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J Mater Res. 2005;20:2046–2054. doi: 10.1557/JMR.2005.0250
  • Bellou A, Scudiero L, Bahr DF. Thermal stability and strength of Mo/Pt multilayered films. J Mater Sci. 2010;45:354–362. doi: 10.1007/s10853-009-3943-4
  • Carpenter JS, Zheng SJ, Zhang RF, Vogel SC, Beyerlein IJ, Mara NA. Thermal stability of Cu-Nb nanolamellar composites fabricated via accumulative roll bonding. Philos Mag. 2013;93:718–735. doi: 10.1080/14786435.2012.731527
  • Vidal V, Thilly L, Lecouturier F, Renault PO. Effects of size and geometry on the plasticity of high-strength copper/tantalum nanofilamentary conductors obtained by severe plastic deformation. Acta Mater. 2006;54:1063–1075. doi: 10.1016/j.actamat.2005.10.031
  • Han K, Embury JD, Petrovic JJ, Weatherly GC. Microstructural aspects of Cu-Ag produced by the Taylor wire method. Acta Mater. 1998;46:4691–4699. doi: 10.1016/S1359-6454(98)00135-9
  • Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Mater. 2004;3:511–516. doi: 10.1038/nmat1180
  • Perez-Prado MT, Gimazov AA, Ruano OA, Kassner ME, Zhilyaev AP. Bulk nanocrystalline omega-Zr by high-pressure torsion. Scr Mater. 2008;58:219–222. doi: 10.1016/j.scriptamat.2007.09.043
  • Nikulin S, Dobatkin S, Rogachev S. Iop. Nanocrystalline zirconium alloys obtained by severe plastic deformation. Names10: New Achievements Mater Environ Sci. 2013;416.
  • Edalati K, Horita Z, Yagi S, Matsubara E. Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng Struct Mater Properties Microstruct Process. 2009;523:277–281. doi: 10.1016/j.msea.2009.07.029
  • Segal VM, Hartwig KT, Goforth RE. In situ composites processed by simple shear. Mater Sci EngStruct Mater Prop Microstruct Process. 1997;224:107–115. doi: 10.1016/S0921-5093(96)10539-6
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials - development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–583. doi: 10.1016/S1359-6454(98)00365-6
  • Dehsorkhi RN, Qods F, Tajally M. Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process. Mater Sci Eng Struct Mater Prop Microstruct Process. 2011;530:63–72. doi: 10.1016/j.msea.2011.09.040
  • Ohsaki S, Kato S, Tsuji N, Ohkubo T, Hono K. Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater. 2007;55:2885–2895. doi: 10.1016/j.actamat.2006.12.027
  • Carpenter JS, Vogel SC, LeDonne JE, Hammon DL, Beyerlein IJ, Mara NA. Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 2012;60:1576–1586. doi: 10.1016/j.actamat.2011.11.045
  • Carpenter JS, McCabe RJ, Zheng SJ, Wynn TA, Mara NA, Beyerlein IJ. Processing parameter influence on texture and microstructural evolution in Cu–Nb multilayer composites fabricated via accumulative roll bonding. Metall Mater Trans A. 2014;45:2192–2208. doi: 10.1007/s11661-013-2162-4
  • Perez-Prado MT, del Valle JA, Ruano OA. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scr Mater. 2004;51:1093–1097. doi: 10.1016/j.scriptamat.2004.07.028
  • Ferrasse S, Segal VM, Alford F, Kardokus J, Strothers S. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries. Mater Sci Eng Struct Mater Prop Microstruct Process. 2008;493:130–140. doi: 10.1016/j.msea.2007.04.133
  • Valiev RZ, Langdon TG. Achieving exceptional grain refinement through severe plastic deformation: new approaches for improving the processing technology. Metall Mater TransPhys Metall Mater Sci. 2011;42A:2942–2951. doi: 10.1007/s11661-010-0556-0
  • Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP. Radiation damage tolerant nanomaterials. Mater Today. 2013;16:443–449. doi: 10.1016/j.mattod.2013.10.019
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT. Texture evolution via combined slip and deformation twinning in rolled silver-copper cast eutectic nanocomposite. Int J Plast. 2011;27:121–146. doi: 10.1016/j.ijplas.2010.05.007
  • Yasuna K, Terauchi M, Otsuki A, Ishihara KN, Shingu PH. Formation of nanoscale Fe/Ag multilayer by repeated press-rolling and its layer thickness dependence of magnetoresistance. Mater Sci Eng Struct Mater Prop Microstruct and Process. 2000;285:412–417. doi: 10.1016/S0921-5093(00)00680-8
  • Han K, Embury JD, Sims JR, Campbell LJ, Schneider-Muntau HJ, Pantsyrnyi VI, Shikov A, Nikulin A, Vorobieva A. The fabrication, properties and microstructure of Cu–Ag and Cu–Nb composite conductors. Mater Sci Eng Struct Mater Prop Microstruct Process. 1999;267: 99–114. doi: 10.1016/S0921-5093(99)00025-8
  • Al-Maharbi M, Karaman I, Beyerlein IJ, Foley D, Hartwig KT, Kecskes LJ, Mathaudhu SN. Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing. Mater Sci Eng Struct Mater Prop Microstruct Process. 2011;528:7616-7627.
  • Jian WW, Cheng GM, Xu WZ, Yuan H, Tsai MH, Wang QD, Koch CC, Zhu YT, Mathaudhu SN. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater Res Lett. 2013;1:61–66. doi: 10.1080/21663831.2013.765927
  • Broussard PR, Mael D, Geballe TH. Specific-heat of niobium-zirconium multilayers. Phys Rev B. 1984;30: 4055–4056. doi: 10.1103/PhysRevB.30.4055
  • Kawasaki M, Langdon TG. The significance of grain boundary sliding in the superplastic Zn-22 % Al alloy processed by ECAP. J Mater Sci. 2013;48:4730– 4741.
  • Perez-Prado MT, Zhilyaev AP. First experimental observation of shear Induced hcp to bcc transformation in pure Zr. Phys Rev Lett. 2009;102.
  • Manna I, Chattopadhyay PP, Banhart F, Fecht HJ. Formation of face-centered-cubic zirconium by mechanical attrition. Appl Phys Lett. 2002;81:4136–4138. doi: 10.1063/1.1519942
  • Knezevic M, Beyerlein IJ, Nizolek T, Mara N, Pollock TM. Anomalous basal slip activity in zirconium under high-strain deformation. Mater Res Lett. 2014;1:133–140. doi: 10.1080/21663831.2013.794375
  • Knezevic M, Nizolek T, Ardeljan M, Beyerlein IJ, Mara N, Pollock TM. Texture evolution in two-phase Zr-Nb lamellar composites during accumulative roll bonding. Int J Plast. 2014;57:16–28. doi: 10.1016/j.ijplas.2014.01.008
  • Sabirov I, Molina-Aldareguia JM, Jiang L, Kassner ME, Perez-Prado MT. Effect of accumulative roll bonding on plastic flow properties of commercially pure zirconium. In: Menary G, editor. 14th International Conference on Material Forming Esaform, 2011 Proceedings, Vol. 1353. Berlin: Springer-Verlag; 2011. p.487–492.
  • Jiang L, Perez-Prado MT, Gruber PA, Arzt E, Ruano OA, Kassner ME. Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding. Acta Mater. 2008;56:1228–1242. doi: 10.1016/j.actamat.2007.11.017
  • Guo D, Li M, Shi Y, Zhang Z, Zhang H, Liu X, Wei B, Zhang X. High strength and ductility in multimodal-structured Zr. Mater Design. 2012;34:275–278. doi: 10.1016/j.matdes.2011.08.002
  • Guo D, Li M, Shi Y, Zhang Z, Zhang H, Liu X, Zhang X. Effect of strain rate on microstructure evolutions and mechanical properties of cryorolled Zr upon annealing. Mater Lett. 2012;66:305–307. doi: 10.1016/j.matlet.2011.08.100
  • Cerreta E, Gray GT, Hixson RS, Rigg PA, Brown DW. The influence of interstitial oxygen and peak pressure on the shock loading behavior of zirconium. Acta Mater. 2005;53:1751–1758. doi: 10.1016/j.actamat.2004.12.024
  • Beyerlein IJ, McCabe RJ, Tome CN. Stochastic processes of 10(1)over-bar2 deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium. Int J Multiscale Comput Eng. 2011;9:459–480. doi: 10.1615/IntJMultCompEng.v9.i4.80
  • Proust G, Kaschner GC, Beyerlein IJ, Clausen B, Brown DW, McCabe RJ, Tome CN. Detwinning of high-purity zirconium: in-situ neutron diffraction experiments. Exp Mech. 2010;50:125–133. doi: 10.1007/s11340-008-9213-6
  • Niezgoda SR, Kanjarla AK, Beyerlein IJ, Tome CN. Stochastic modeling of twin nucleation in polycrystals: an application in hexagonal close-packed metals. Int J Plast. 2014.
  • McCabe RJ, Proust G, Cerreta EK, Misra A. Quantitative analysis of deformation twinning in zirconium. Int J Plast. 2009;25:454–472. doi: 10.1016/j.ijplas.2008.03.010
  • Hansen BL, Carpenter JS, Sintay SD, Bronkhorst CA, McCabe RJ, Mayeur JR, Mourad HM, Beyerlein IJ, Mara NA, Chen SR, Gray GT, III. Modeling the texture evolution of Cu/Nb layered composites during rolling. Int J Plast. 2013;49:71–84. doi: 10.1016/j.ijplas.2013.03.001
  • Steif PS. On deformation instabilities in clad metals subjected to rolling. J Appl Metalworking. 1987;4: 317–326. doi: 10.1007/BF02833942
  • Massalski TB, Okamoto H. Binary alloy phase diagrams. Materials Park, OH: ASM international; 1990.
  • Sauvage X, Renaud L, Deconihout B, Blavette D, Ping DH, Hono K. Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 2001;49:389–394. doi: 10.1016/S1359-6454(00)00338-4
  • Wu F, Bellon P, Melmed AJ, Lusby TA. Forced mixing and nanoscale decomposition in ball-milled Cu-Ag characterized by APFIM. Acta Mater. 2001;49:453–461. doi: 10.1016/S1359-6454(00)00329-3
  • Yavari AR, Desre PJ, Benameur T. Mechanically driven alloying of immiscible elements. Phys Rev Lett. 1992;68:2235–2238. doi: 10.1103/PhysRevLett.68.2235
  • Wenk HR, Lutterotti L, Vogel S. Texture analysis with the new HIPPO TOF diffractometer. Nuclear Instrum Methods Phys Res SectA. 2003;515:575–588. doi: 10.1016/j.nima.2003.05.001
  • Vogel SC, Hartig C, Lutterotti L, Von Dreele RB, Wenk HR, Williams DJ. Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method. Powder Diffr. 2004;19:65–68. doi: 10.1154/1.1649961
  • Beyerlein IJ, Mara NA, Carpenter JS, Nizolek T, Mook WM, Wynn TA, McCabe RJ, Mayeur JR, Kang K, Zheng S, Wang J, Pollock TM. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation. J Mater Res. 2013;28:1799–1812. doi: 10.1557/jmr.2013.21
  • Weissmuller J, Markmann J. Deforming nanocrystalline metals: new insights, new puzzles. Adv Eng Mater. 2005;7:202–207. doi: 10.1002/adem.200400211
  • Brown DW, Beyerlein IJ, Sisneros TA, Clausen B, Tome CN. Role of twinning and slip during compressive deformation of beryllium as a function of strain rate. Int J Plast. 2012;29:120–135. doi: 10.1016/j.ijplas.2011.08.006
  • Yapici GG, Tome CN, Beyerlein IJ, Karaman I, Vogel SC, Liu C. Plastic flow anisotropy of pure zirconium after severe plastic deformation at room temperature. Acta Mater. 2009;57:4855–4865. doi: 10.1016/j.actamat.2009.06.050
  • Knezevic M, Beyerlein IJ, Brown DW, Sisneros TA, Tome CN. A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: application to beryllium. Int J Plast. 2013;49:185–198. doi: 10.1016/j.ijplas.2013.03.008
  • Skrotzki W, Eschke A, Joni B, Ungar T, Toth LS, Ivanisenko Y, Kurmanaeva L. New experimental insight into the mechanisms of nanoplasticity. Acta Mater. 2013;61:7271–7284. doi: 10.1016/j.actamat.2013.08.032
  • Raabe D, Lucke K. Rolling textures of niobium and molybdenum. Z Fur Metallkunde. 1994;85:302–306.
  • Engler O, Randle V. Introduction to texture analysis. Boca Raton, FL: CRC Press; 2010.
  • Jiang L, Ruano OA, Kassner ME, Perez-Prado MT. The fabrication of bulk ultrafine-grained zirconium by accumulative roll bonding. JOM. 2007;59:42–45. doi: 10.1007/s11837-007-0077-5
  • Philippe MJ, Serghat M, Vanhoutte P, Esling C. Modeling of texture evolution for materials of hexagonal symmetry.2. Application to zirconium and titanium alpha-alloys or near-alpha-alloys. Acta Metallurgica Et Mater. 1995;43:1619–1630. doi: 10.1016/0956-7151(94)00329-G
  • Lim SCV, Rollett AD. Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu–Nb composite. Mater Sci EngStruct Mater Prop Microstruct Process. 2009;520:189–196. doi: 10.1016/j.msea.2009.05.020
  • Beyerlein IJ, Wang J, Kang K, Zheng SJ, Mara N. Twinnability of bimetal interfaces in nanostructured composites. Mater Res Lett. 2014;1:89–95. doi: 10.1080/21663831.2013.782074
  • Beyerlein IJ, Wang J, Zhang R. Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater. 2013;61:7488–7499. doi: 10.1016/j.actamat.2013.08.061
  • Beyerlein IJ, Jian W, Ruifeng Z. Interface-dependent nucleation in nanostructured layered composites. APL Mater. 2013;1:032112. Available from: http://scitation.aip.org/content/aip/journal/aplmater/1/3/10.1063/1.4820424 doi: 10.1063/1.4820424
  • Carpenter JS, McCabe RJ, Beyerlein IJ, Wynn TA, Mara NA. A wedge-mounting technique for nanoscale electron backscatter diffraction. J Appl Phys. 2013;113:094304. Available from: http://scitation.aip.org/content/aip/journal/jap/113/9/10.1063/1.4794388 doi: 10.1063/1.4794388
  • Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W, Mara NA. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nature Commun. 2013;4:1696. Available from: http://www.nature.com/ncomms/journal/v4/n4/abs/ncomms2651.html doi: 10.1038/ncomms2651
  • Monclus MA, Zheng SJ, Mayeur JR, Beyerlein IJ, Mara NA, Polcar T, Llorca J, Molina-Aldareguia JM. Optimum high temperature strength of two-dimensional nanocomposites. APL Mater. 2013;1:052103. Available from: http://scitation.aip.org/content/aip/journal/aplmater/1/5/10.1063/1.4828757 doi: 10.1063/1.4828757
  • Han WZ, Cerreta E, Mara N, Beyerlein IJ, Carpenter J, Zheng SJ, Trujillo CP, Dickerson P, Misra A. Deformation and failure of shocked bulk Cu-Nb nanolaminates. Acta Mater. 2014;63:150–161. doi: 10.1016/j.actamat.2013.10.019
  • Han W, Demkowicz MJ, Mara NA, Fu E, Sinha S, Rollett AD, Wang Y, Carpenter JS, Beyerlein IJ, Misra A. Design of radiation tolerant materials via interface engineering. Adv Mater. 2013;25:6975–6979. doi: 10.1002/adma.201303400