2,849
Views
35
CrossRef citations to date
0
Altmetric
Original Reports

Controlling Phase Growth During Solidification by Nanoparticles

, &
Pages 43-49 | Received 18 Jul 2014, Accepted 14 Aug 2014, Published online: 04 Sep 2014

References

  • Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R. Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Mater. 2009 Feb;57: 941–971.
  • Boettinger WJ, Coriell SR, Greer AL, Karma A, Kurz W, Rappaz M, Trivedi R. Solidification microstructures: recent developments, future directions. Acta Mater. 2000 Jan;48:43–70. doi: 10.1016/S1359-6454(99)00287-6
  • Flemings MC. Solidification processing. New York: McGraw-Hill; 1974.
  • Kerr HW, Kurz W. Solidification of peritectic alloys. Int Mater Rev. 1996 Jan;41:129–164. doi: 10.1179/imr.1996.41.4.129
  • Mirihanage WU, Dai H, Dong H, Browne DJ. Computational modeling of columnar to equiaxed transition in alloy solidification. Adv Eng Mater. 2013 Apr;15: 216–229. doi: 10.1002/adem.201200220
  • Rappaz M, Rettenmayr M. Simulation of solidification. Curr Opin Solid State Mater Sci. 1998 Jun;3: 275–282. doi: 10.1016/S1359-0286(98)80103-4
  • Shevchenko N, Boden S, Eckert S, Borin D, Heinze M, Odenbach S. Application of X-ray radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts. Eur Phys J Spec Top. 2013 Mar;220:63–77. doi: 10.1140/epjst/e2013-01797-y
  • Atkinson H. Modelling the semisolid processing of metallic alloys. Prog Mater Sci. 2005 Mar;50:341–412. doi: 10.1016/j.pmatsci.2004.04.003
  • De Cicco MP, Li X, Turng LS. Semi-solid casting (SSC) of zinc alloy nanocomposites. J Mater Process Technol. 2009 Sep;209:5881–5885. doi: 10.1016/j.jmatprotec.2009.07.001
  • Choi H, Cho W, Konishi H, Kou S, Li X. Nanoparticle-induced superior hot tearing resistance of A206 alloy. Metall Mater Trans A. 2012 Nov;44:1897–1907. doi: 10.1007/s11661-012-1531-8
  • Greer A, Bunn A, Tronche A, Evans P, Bristow D. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B. Acta Mater. 2000 Jun;48:2823–2835. doi: 10.1016/S1359-6454(00)00094-X
  • Greer AL. Nanostructure by nucleation. Nature. 1994;368: 688–689. doi: 10.1038/368688a0
  • Nagarajan R, Chattopadhyay K. Intermetallic Ti2Ni/TiNi nanocomposites by rapid solidification. Acta Met Mater. 1994;42:947–958. doi: 10.1016/0956-7151(94)90289-5
  • Lavernia EJ, Srivatsan TS. The rapid solidification processing of materials science: principles, technology, advances, and applications. J Mater Sci. 2010 Dec;45:287–325. doi: 10.1007/s10853-009-3995-5
  • Kelton KF, Greer AL. Nucleation in condensed matter: applications in materials and biology. Oxford: Pergamon; 2010.
  • Maxwell I, Hellawell A. A simple model for grain refinement during solidification. Acta Metall. 1975;23: 229–237. doi: 10.1016/0001-6160(75)90188-1
  • Stjohn DH, Qian MA, Easton MA, Cao P, Hildebrand ZOË. Grain refinement of magnesium alloys. Metall Mater Trans A. 2005;36:1669–1679. doi: 10.1007/s11661-005-0030-6
  • Timpel M, Wanderka N, Schlesiger R, Yamamoto T, Lazarev N, Isheim D, Schmitz G, Matsumura S, Banhart J. The role of strontium in modifying aluminium–silicon alloys. Acta Mater. 2012 May;60:3920–3928. doi: 10.1016/j.actamat.2012.03.031
  • Lu S, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning. Metall Trans A. 1987;18:1721–1733. doi: 10.1007/BF02646204
  • Chen LY, Xu JQ, Choi H, Konishi H, Jin S, Li XC. Rapid control of phase growth by nanoparticles. Nat Commun. 2014 Jan;5:3879.
  • McAlister A, Kahan D. The Al-Sn (aluminum-tin) system. Bull Alloy Phase Diagr. 1983;4:410–414. doi: 10.1007/BF02868095
  • Chen LY, Peng JY, Xu JQ, Choi H, Li XC. Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater. 2013 Oct;69:634–637. doi: 10.1016/j.scriptamat.2013.07.016
  • Yang Y, Lan J, Li X. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A. 2004 Aug;380:378–383. doi: 10.1016/j.msea.2004.03.073
  • Pryds N, Huang X. The effect of cooling rate on the microstructures formed during solidification of ferritic steel. Metall Mater Trans A. 2000;31:3155–3166. doi: 10.1007/s11661-000-0095-1
  • Schultz BF, Ferguson JB, Rohatgi PK. Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater Sci Eng A. 2011 Dec;530:87–97. doi: 10.1016/j.msea.2011.09.042
  • Porter DA, Easterling KE. Phase transformations in metals and alloys. 2nd ed. London: Chapman & Hall; 1992.
  • Wang D, De Cicco MP, Li X. Using diluted master nanocomposites to achieve grain refinement and mechanical property enhancement in as-cast Al–9Mg. Mater Sci Eng A. 2012 Jan;532:396–400. doi: 10.1016/j.msea.2011.11.002
  • Jones DRH. The free energies of solid-liquid interfaces. J Mater Sci. 1974;9:1–17. doi: 10.1007/BF00554751
  • Gündüz M, Hunt JD. The measurement of solid-liquid surface energies in the Al-Cu, Al-Si and Pb-Sn systems. Acta Metall. 1985;33:1651–1672. doi: 10.1016/0001-6160(85)90161-0
  • Jiang Q, Shi HX, Zhao M. Free energy of crystal–liquid interface. Acta Mater. 1999 May;47:2109–2112. doi: 10.1016/S1359-6454(99)00085-3
  • Jiang Q, Lu HM. Size dependent interface energy and its applications. Surf Sci Rep. 2008 Oct;63:427–464. doi: 10.1016/j.surfrep.2008.07.001
  • Eustathopoulos N. Energetics of solid/liquid interfaces of metals and alloys. Int Met Rev. 1983 Jan;28:189–210. doi: 10.1179/imr.1983.28.1.189