5,719
Views
96
CrossRef citations to date
0
Altmetric
Original Reports

An Ideal Ultrafine-Grained Structure for High Strength and High Ductility

, , , , &
Pages 88-94 | Received 07 Jul 2014, Accepted 18 Sep 2014, Published online: 09 Oct 2014

References

  • Zhu YT, Liao XZ. Nanostructured metals-retaining ductility. Nature Mater. 2004;3:351–352. doi: 10.1038/nmat1141
  • Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18:2280–2283. doi: 10.1002/adma.200600310
  • Zhao YH, Bingert JF, Liao XZ, Cui BZ, Han K, Sergueeva AV, Mukherjee AK, Valiev RZ, Langdon TG, Zhu YT. Simultaneously increasing the ductility and strength of ultrafine-grained pure copper. Adv Mater. 2006;18:2949–2953. doi: 10.1002/adma.200601472
  • Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–39. doi: 10.1007/s11837-006-0213-7
  • Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdore D. Overview no. 96: evolution of fcc deformation structures in polyslip. Acta Metal Mater. 1992;40:205–219. doi: 10.1016/0956-7151(92)90296-Q
  • Bay B, Hansen N, Kuhlmann-Wilsdore D. Deformation structures in light rolled pure aluminum. Mater Sci Eng A. 1989;113:385–397. doi: 10.1016/0921-5093(89)90325-0
  • Huang JY, Zhu YT, Jiang H, Lowe TC. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 2001;49:1497–1505. doi: 10.1016/S1359-6454(01)00069-6
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Witkin DB, Lavernia EJ. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci. 2006;51:1–60. doi: 10.1016/j.pmatsci.2005.04.004
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Saito Y, Tsuji N, Utsunomiya, Sakai T, Hong RG. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Mater. 1998;39:1221–1227.
  • Hausol T, Hoppel HW, Goken M. Tailoring materials properties of UFG aluminum alloys by accumulative roll bonded sandwich-lick sheets. J Mater Sci. 2010;45:4733–4738. doi: 10.1007/s10853-010-4678-y
  • Beyerlein IJ, Mara NA, Carpenter JS, Nizolek T, Mook WM, Wynn TA, McCabe RJ, Mayeur JR, Kang K, Zheng S, Wang J, Pollock TM. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation. J Mater Sci. 2013;28:1799–1812.
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • Park KT, Kim YS, Lee JG, Shin DH. Thermal stability and mechanical properties of ultrafine grained low carbon steel. Mater Sci Eng A. 2000;293:165–172. doi: 10.1016/S0921-5093(00)01220-X
  • Yu YC, Kao PW, Chang CP. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater. 2005;53:4019–4028. doi: 10.1016/j.actamat.2005.05.005
  • Stolyarov VV, Zhu YT, Lowe TC, Valiev RZ. Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mater Sci Eng A. 2001;303:82–89. doi: 10.1016/S0921-5093(00)01884-0
  • Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyrolainen A. Enhanced mechanical properties through reversion in metastable austenitic stainless steels. Metall Mater Trans A. 2009;40:729–744. doi: 10.1007/s11661-008-9723-y
  • Misra RDK, Kumar BR, Somani M, KarJalainen P. Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels. Scripta Mater. 2008;59:79–82. doi: 10.1016/j.scriptamat.2008.02.028
  • Huang CX, Yang G, Deng B, Wu SD, Li SX, Zhang ZF. Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing. Phil Mag. 2007;87:4949–4971. doi: 10.1080/14786430701594046
  • Wu XL, Zhu YT. Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett. 2008;101:025503. doi: 10.1103/PhysRevLett.101.025503
  • Lu L, Shen YF, Chen XH, Qian LH, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352. doi: 10.1126/science.1159610
  • Yoo CS, Park YM, Jung YS, Lee YK. Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel. Scripta Mater. 2008;59:71–74. doi: 10.1016/j.scriptamat.2008.02.024
  • Turtletaub S, Suiker ASJ. Grain size effects in multiphase steels assisted by transformation-induced plasticity. Inter J Solids Mech. 2006;43:7322–7336. doi: 10.1016/j.ijsolstr.2006.06.017
  • Mataya MC, Brown EL, Riendeau MP. Effect of hot-working on structure and strength of type 304 L austenitic stainless steel. Metall Trans A. 1990;21:1969–1987. doi: 10.1007/BF02647245
  • Qu S, Huang CX, Gao YL, Yang G, Wu SD, Zang QS, Zhang ZF. Tensile and compressive properties of AISI 304 L stainless steel subjected to equal channel angular pressing. Mater Sci Eng A. 2008;475:207–216. doi: 10.1016/j.msea.2007.04.111
  • Huang CX, Yang G, Gao YL, Wu SD, Zhang ZF.: Influence of processing temperature on the microstructures and tensile properties of 304 L stainless steel by ECAP. Mater Sci Eng A. 2008;485:643–650. doi: 10.1016/j.msea.2007.08.067
  • Ravi Kumar B, Mahato B, Sharma S, Sahu JK. Effect of cyclic thermal process on ultrafine grain formation in AISI 304 L austenitic stainless steel. Metall Mater Trans A. 2009;40:3226–3234. doi: 10.1007/s11661-009-0033-9
  • Ravi Kumar B, Raabe D. Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling. Scripta Mater. 2012;66:634–637. doi: 10.1016/j.scriptamat.2012.01.052
  • Eliezer D, Chakrapani DG, Altstetter CJ, Puch EN. The influence of austenite stability on the hydrogen embrittlement and stress-corrosion cracking of stainless steel. Metall Trans A. 1979;10:935–941. doi: 10.1007/BF02658313
  • Han G, He J, Fukuyama S, Yokogawa K. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Mater. 1998;46:4559–4570. doi: 10.1016/S1359-6454(98)00136-0
  • Zhang L, Wen M, Imade M, Fukuyama S, Yokogawa K. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures. Acta Mater. 2008;56:3414–3421. doi: 10.1016/j.actamat.2008.03.022
  • Hamada AS, Karjalainen LP, Somani MC. Electrochemical corrosion behavior of a novel submicron-grained austenitic steel in an acidic NaCl solution. Mater Sci Eng A. 2006;431:211–217. doi: 10.1016/j.msea.2006.05.138
  • Alvarez SM, Bautista A, Velasco F.: Influence of strain-induced martensite in the anodic dissolution of austenitic stainless steel in acid medium. Corros Sci. 2013;69:130–138. doi: 10.1016/j.corsci.2012.11.033
  • Balusamy T, Sankara Narayanan TSN, Ravichandran K, Song park II, Lee MH. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behavior of AISI 304 stainless steel. Corros Sci. 2013;74:332–344. doi: 10.1016/j.corsci.2013.04.056
  • Schramm RE, Reed RP. Stacking-fault energies of 7 commercial austenitic stainless-steels. Metall Trans A. 1975;6:1345–1351. doi: 10.1007/BF02641927
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX. Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 2006;54:655–665. doi: 10.1016/j.actamat.2005.10.002
  • Wang ZW, Wang YB, Liao XZ, Zhao YH, Lavernia EJ, Zhu YT, Horita Z, Langdon TG. Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials. Scripta Mater. 2009;60:52–55. doi: 10.1016/j.scriptamat.2008.08.032
  • Cao Y, Wang YB, Chen ZB, Liao XZ, Kawasaki M, Ringer SP, Langdon TG, Zhu YT. De-twinning via secondary twinning in face-centered cubic alloys. Mater Sci Eng A. 2013;578:110–114. doi: 10.1016/j.msea.2013.04.075
  • Seeger A, Diehl J, Mader S, Rebstock H. Work-hardening and work softening of face-centred cubic metal crystals. Phil Mag. 1957;2:323–350. doi: 10.1080/14786435708243823
  • Wu XL, Zhu YT, Wei GY, Wei Q. Strong strain hardening in nanocrystalline nickel. Phys Rev Lett. 2009;103:205504. doi: 10.1103/PhysRevLett.103.205504
  • Jin ZH, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 2008;56:1126–1135. doi: 10.1016/j.actamat.2007.11.020
  • Zhu YT, Wu XL, Liao XZ, Narayan J, Kecskes LJ, Mathauhu SN. Dislocation-twin interactions in nanocrystalline fcc metals. Acta Mater. 2011;59:812–821. doi: 10.1016/j.actamat.2010.10.028
  • Kassner ME. Taylor hardening in five-power-law creep of metals and Class M alloys. Acta Mater. 2004;52:1–9. doi: 10.1016/j.actamat.2003.08.019
  • Jian WW, Cheng GM, Xu WZ, Koch CC, Wang QD, Zhu YT, Mathaudhu SN. Physics and modeling of strengthening of metals by parallel stacking faults. Appl Phys Lett. 2013;103:133108. doi: 10.1063/1.4822323
  • Jian WW, Cheng GM, Xu WZ, Yuan H, Tsai MH, Wang QD, Koch CC, Zhu YT, Mathaudhu SN. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater Res Lett. 2013;1:61–66. doi: 10.1080/21663831.2013.765927
  • Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl Phys Lett. 2006;89:121906. doi: 10.1063/1.2356310
  • Huang CX, Hu W, Yang G, Zhang ZF, Wu SD, Wang QY, Gottstein G. The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper-aluminum alloys processed by equal channel angular pressing. Mater Sci Eng A. 2012;556:638–647. doi: 10.1016/j.msea.2012.07.041
  • Huang CX, Hu WP, Wang QY. Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu-11.1at%Al alloy with low stacking fault energy. Mater Sci Eng A. 2014;611:274–279. doi: 10.1016/j.msea.2014.05.093
  • Zhu T, Gao HJ. Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scripta Mater. 2012;66:843–848. doi: 10.1016/j.scriptamat.2012.01.031
  • Li N, Wang J, Misra A, Zhang X, Huang JY, Hirth JP. Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 2011;59:5989–5996. doi: 10.1016/j.actamat.2011.06.007
  • Lu L, You ZS, Lu K. Work hardening of polycrystalline Cu with nanoscale twins. Scripta Mater. 2012;66:837–842. doi: 10.1016/j.scriptamat.2011.12.046
  • Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG. Achieving high strength and high ductility in precipitation-hardened alloys. Adv Mater. 2005;17:1599–1602. doi: 10.1002/adma.200500069
  • Ma YQ, Jin JE, Lee YK. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater. 2005;52:1311–1315. doi: 10.1016/j.scriptamat.2005.02.018
  • Huang CX, Yang G, Wang C, Zhang ZF, Wu SD. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by equal-channel angular pressing. Metall Mater Trans A. 2011;42:2061–2071. doi: 10.1007/s11661-010-0575-x
  • Scott P. A review of irradiation assisted stress corrosion cracking. J Nucl Mater. 1994;211:101–122. doi: 10.1016/0022-3115(94)90360-3
  • Zinkle SJ, Was GS. Materials challenges in nuclear energy. Acta Mater. 2013;61:735–758. doi: 10.1016/j.actamat.2012.11.004