5,154
Views
63
CrossRef citations to date
0
Altmetric
Brief Overview

Thermodynamic Grain Size Stabilization Models: An Overview

, &
Pages 65-75 | Received 17 Jun 2014, Accepted 08 Dec 2014, Published online: 02 Jan 2015

References

  • Koch CC. Nanostructured materials: processing, properties and applications. Norwich (NY): William Andrew; 2006.
  • Suryanarayana C. Nanocrystalline materials. Int Mater Rev. 1995;40:41–64. doi: 10.1179/imr.1995.40.2.41
  • Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33:223–315. doi: 10.1016/0079-6425(89)90001-7
  • Nieman GW, Weertman JR, Siegel RW. Mechanical behavior of nanocrystalline Cu and Pd. J Mater Res. 1991;6:1012–1027. doi: 10.1557/JMR.1991.1012
  • Xiao C, Mirshams RA, Whang SH, Yin WM. Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater Sci Eng A. 2001;301:35–43. doi: 10.1016/S0921-5093(00)01392-7
  • Yin WM, Whang SH, Mirshams R, Xiao CH. Creep behavior of nanocrystalline nickel at 290 and 373 K. Mater Sci Eng A. 2001;301:18–22. doi: 10.1016/S0921-5093(00)01385-X
  • Lu L, Li SX, Lu K. Scr Mater. 2001;45:1163. doi: 10.1016/S1359-6462(01)01138-1
  • Kim HS, Hong SI, Lee YS, Dubravina AA, Alexandrov IV. Deformation behavior of copper during a high pressure torsion process. J Mater Process Technol. 2003;142:334–337. doi: 10.1016/S0924-0136(03)00590-9
  • Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV. Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl Phys Lett. 2004;84:592. doi: 10.1063/1.1644051
  • Kawasaki M, Figueiredo RB, Langdon TG. An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Mater. 2011;59:308–316. doi: 10.1016/j.actamat.2010.09.034
  • Edalati K, Fujioka T, Horita Z. Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng A. 2008;497:168–173. doi: 10.1016/j.msea.2008.06.039
  • Wen H, Zhao Y, Li Y, Ertorer O, Nesterov KM, Islamgaliev RK, Valiev RZ, Lavernia EJ. High-pressure torsion-induced grain growth and detwinning in cryomilled Cu powders. Philos Mag. 2010;90:4541–4550. doi: 10.1080/14786435.2010.514579
  • Liao XZ, Kilmametov AR, Valiev RZ, Gao H, Li X, Mukherjee AK, Bingert JF, Zhu YT. High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett. 2006;88:021909. doi: 10.1063/1.2159088
  • Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater. 1996;35:143–146. doi: 10.1016/1359-6462(96)00107-8
  • Xu C, Furukawa M, Horita Z, Langdon TG. The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP. Mater Sci Eng A. 2005;398:66–76. doi: 10.1016/j.msea.2005.03.083
  • Terhune SD, Swisher DL, Oh-Ishi K, Horita Z, Langdon TG, McNelley TR. An investigation of microstructure and grain-boundary evolution during ECA pressing of pure aluminum. Metall Mater Trans A. 2002;33:2173–2184. doi: 10.1007/s11661-002-0049-x
  • Sun PL, Kao PW, Chang CP. Effect of deformation route on microstructural development in aluminum processed by equal channel angular extrusion. Metall Mater Trans A. 2004;35:1359–1368. doi: 10.1007/s11661-004-0311-5
  • Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ. Influence of ECAP routes on the microstructure and properties of pure Ti. Mater Sci Eng A. 2001;299:59–67. doi: 10.1016/S0921-5093(00)01411-8
  • Komura S, Horita Z, Nemoto M, Langdon TG. Influence of stacking fault energy on microstructural development in equal-channel angular pressing. J Mater Res. 1999;14:4044–4050. doi: 10.1557/JMR.1999.0546
  • Suryanarayana C, Ivanov E, Boldyrev VV. The science and technology of mechanical alloying. Mater Sci Eng A. 2001;304–306:151–158. doi: 10.1016/S0921-5093(00)01465-9
  • Koch CC, Cho YS. Nanocrystals by high energy ball milling. Nanostruct Mater. 1992;1:207–212. doi: 10.1016/0965-9773(92)90096-G
  • Koch CC. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct Mater. 1997;9:13–22. doi: 10.1016/S0965-9773(97)00014-7
  • Eckert J, Holzer JC, Krill CE, Johnson WL. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. J Mater Res. 1992;7:1751–1761. doi: 10.1557/JMR.1992.1751
  • Hellstern E, Fecht HJ, Fu Z, Johnson WL. Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J Appl Phys. 1989;65:305. doi: 10.1063/1.342541
  • Oleszak D, Shingu PH. Nanocrystalline metals prepared by low energy ball milling. J Appl Phys. 1996;79:2975. doi: 10.1063/1.361294
  • Gaffet E, Harmelin M. Crystal-amorphous phase transition induced by ball-milling in silicon. J Common Met. 1990;157:201–222. doi: 10.1016/0022-5088(90)90176-K
  • Shen TD, Koch CC, McCormick TL, Nemanich RJ, Huang JY, Huang JG. The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling. J Mater Res. 1995;10:139–148. doi: 10.1557/JMR.1995.0139
  • Shen TD, Ge WQ, Wang KY, Quan MX, Wang JT, Wei WD, Koch CC. Structural disorder and phase transformation in graphite produced by ball milling. Nanostruct Mater. 1996;7:393–399. doi: 10.1016/0965-9773(96)00010-4
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Darling KA, Roberts AJ, Mishin Y, Mathaudhu SN, Kecskes LJ. Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. J Alloys Compd. 2013;573:142–150. doi: 10.1016/j.jallcom.2013.03.177
  • Koch CC, Scattergood RO, Darling KA, Semones JE. Stabilization of nanocrystalline grain sizes by solute additions. J Mater Sci. 2008;43:7264–7272. doi: 10.1007/s10853-008-2870-0
  • Andrievski RA. Review of thermal stability of nanomaterials. J Mater Sci. 2014;49:1449–1460. doi: 10.1007/s10853-013-7836-1
  • Cahn JW. In: Johnson WC, Blakely JM, editors. Surface segregation in metals and alloys. Metals Park: ASM; 1979.
  • Hondros ED, Seah MP. The theory of grain boundary segregation in terms of surface adsorption analogues. Metall Trans A. 1977;8:1363–1371. doi: 10.1007/BF02642850
  • Weissmüller J. Alloy effects in nanostructures. Nanostruct Mater. 1993;3:261–272. doi: 10.1016/0965-9773(93)90088-S
  • Weissmüller J. Alloy thermodynamics in nanostructures. J Mater Res. 1994;9:4–7. doi: 10.1557/JMR.1994.0004
  • Kirchheim R. Grain coarsening inhibited by solute segregation. Acta Mater. 2002;50:413–419. doi: 10.1016/S1359-6454(01)00338-X
  • Liu F, Kirchheim R. Grain boundary saturation and grain growth. Scr Mater. 2004;51:521–525. doi: 10.1016/j.scriptamat.2004.05.042
  • Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J Cryst Growth. 2004;264:385–391. doi: 10.1016/j.jcrysgro.2003.12.021
  • Darling KA, Tschopp MA, VanLeeuwen BK, Atwater MA, Liu ZK. Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps. Comput. Mater. Sci. 2014;84:255–266. doi: 10.1016/j.commatsci.2013.10.018
  • Trelewicz JR, Schuh CA. Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B. 2009;79:094112. doi: 10.1103/PhysRevB.79.094112
  • Saber M, Kotan H, Koch CC, Scattergood RO. Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys. 2013;113:063515. doi: 10.1063/1.4791704
  • Saber M, Kotan H, Koch CC, Scattergood RO. A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys. 2013;114:103510. doi: 10.1063/1.4821040
  • McLean D. 1957.
  • Defay R, Bellemans A, Prigogine I. CERN Document Server; 1966.
  • Burton JJ, Machlin ES. Prediction of segregation to alloy surfaces from bulk phase diagrams. Phys Rev Lett. 1976;37:1433. doi: 10.1103/PhysRevLett.37.1433
  • Wynblatt P, Ku RC. Surface energy and solute strain energy effects in surface segregation. Surf Sci. 1977;65:511–531. doi: 10.1016/0039-6028(77)90462-9
  • Wynblatt P, Chatain D. Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans A. 2006;37:2595–2620. doi: 10.1007/BF02586096
  • Friedel J. Electronic structure of primary solid solutions in metals. Adv Phys. 1954;3:446–507. doi: 10.1080/00018735400101233
  • Atwater MA, Darling KA. A Visual Library of Stability in Binary Metallic Systems: The Stabilization of Nanocrystalline Grain Size by Solute Addition: Part 1, Army Research Laboratory; 2012.
  • Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 2007;55:5129–5138. doi: 10.1016/j.actamat.2007.05.047
  • Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. II. Experimental evidence and consequences. Acta Mater. 2007;55:5139–5148. doi: 10.1016/j.actamat.2007.05.033
  • Miedema AR. On the heat of formation of solid alloys. II. J Less Common Met. 1976;46:67–83. doi: 10.1016/0022-5088(76)90180-6
  • Chookajorn T, Murdoch HA, Schuh CA. Design of stable nanocrystalline alloys. Science. 2012;337:951–954. doi: 10.1126/science.1224737
  • Chookajorn T, Schuh CA. Nanoscale segregation behavior and high-temperature stability of nanocrystalline W–20 at.% Ti. Acta Mater. 2014;73:128–138. doi: 10.1016/j.actamat.2014.03.039
  • Murdoch HA, Schuh CA. Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta Mater. 2013;61:2121–2132. doi: 10.1016/j.actamat.2012.12.033
  • Kotan H, Saber M, Koch CC, Scattergood RO. Effect of annealing on microstructure, grain growth, and hardness of nanocrystalline Fe–Ni alloys prepared by mechanical alloying. Mater Sci Eng A. 2012;552:310–315. doi: 10.1016/j.msea.2012.05.045
  • Kotan H, Darling KA, Saber M, Koch CC, Scattergood RO. Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy. J Alloys Compd. 2013;551:621–629. doi: 10.1016/j.jallcom.2012.10.179
  • Saber M, Kotan H, Koch CC, Scattergood RO. Thermal stability of nanocrystalline Fe–Cr alloys with Zr additions. Mater Sci Eng A. 2012;556:664–670. doi: 10.1016/j.msea.2012.07.045
  • Witkin DB, Lavernia EJ. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci. 2006;51:1–60. doi: 10.1016/j.pmatsci.2005.04.004
  • Chookajorn T, Schuh CA. Thermodynamics of stable nanocrystalline alloys: a Monte Carlo analysis. Phys Rev B. 2014;89:064102. doi: 10.1103/PhysRevB.89.064102
  • Millett PC, Selvam RP, Bansal S, Saxena A. Atomistic simulation of grain boundary energetics – Effects of dopants. Acta Mater. 2005;53:3671–3678. doi: 10.1016/j.actamat.2005.04.031
  • Millett PC, Selvam RP, Saxena A. Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants. Acta Mater. 2006;54:297–303. doi: 10.1016/j.actamat.2005.07.024
  • Millett PC, Selvam RP, Saxena A. Stabilizing nanocrystalline materials with dopants. Acta Mater. 2007;55:2329–2336. doi: 10.1016/j.actamat.2006.11.028
  • Purohit Y, Jang S, Irving DL, Padgett CW, Scattergood RO, Brenner DW. Atomistic modeling of the segregation of lead impurities to a grain boundary in an aluminum bicrystalline solid. Mater Sci Eng A. 2008;493:97–100. doi: 10.1016/j.msea.2007.05.128
  • Purohit Y, Sun L, Irving DL, Scattergood RO, Brenner DW. Computational study of the impurity induced reduction of grain boundary energies in nano- and bi-crystalline Al–Pb alloys. Mater Sci Eng A. 2010;527:1769–1775. doi: 10.1016/j.msea.2009.11.034
  • Purohit Y, Sun L, Shenderova O, Scattergood RO, Brenner DW. First-principles-based mesoscale modeling of the solute-induced stabilization of tilt grain boundaries in an Al–Pb alloy. Acta Mater. 2011;59:7022–7028. doi: 10.1016/j.actamat.2011.07.056