6,670
Views
249
CrossRef citations to date
0
Altmetric
Brief Overviews

Fundamentals of Superior Properties in Bulk NanoSPD Materials

, , , , &
Pages 1-21 | Received 15 Apr 2015, Accepted 06 Jun 2015, Published online: 28 Jul 2015

References

  • Valiev RZ, Langdon TG. Report of international NanoSPD steering committee and statistics on recent NanoSPD activities. IOP Conf Ser Mater Sci Eng. 2014;63: 011002.
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9
  • Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. J Mater. 2006;58:33–39.
  • Zehetbauer MJ, Zhu YT, editor. Bulk nanostructured materials. Weinheim: Wiley-VCH; 2009.
  • Valiev RZ, Zhilyaev AP, Langdon TG. Bulk nanostructured materials: fundamentals and applications. Hoboken, NJ: Wiley; 2014.
  • Wang YB, Liao XZ, Zhao YH, Cooley JC, Horita Z, Zhu YT. Elemental separation in nanocrystalline Cu-Al alloys. Appl Phys Lett. 2013;102:231912. doi: 10.1063/1.4811157
  • Langdon TG. Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater. 2013;61:7035–7059. doi: 10.1016/j.actamat.2013.08.018
  • Production of multifunctional materials using severe plastic deformation. In: Horita Z, Editor. International Symposium on Giant Straining Process for Advanced Materials (GSAM2010). Fukuoka: Kyushu University Press; 2010.
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038
  • Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A. 2012;540:1–12. doi: 10.1016/j.msea.2012.01.080
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Zhao YH, Bingert JE, Liao XZ, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater. 2006;18:2949–2953. doi: 10.1002/adma.200601472
  • Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006;18:2280–2283. doi: 10.1002/adma.200600310
  • Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl Phys Lett. 2006;89:121906. doi: 10.1063/1.2356310
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Wu XL, Zhu YT. Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett. 2008;101:025503. doi: 10.1103/PhysRevLett.101.025503
  • Zhu YT, Liao XZ, Wu XL, Narayan J. Grain size effect on deformation twinning and detwinning. J Mater Sci. 2013;48:4467–4475. doi: 10.1007/s10853-013-7140-0
  • Ni S, Wang YB, Liao XZ, et al. Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals. Phys Rev B. 2011;84:235401. doi: 10.1103/PhysRevB.84.235401
  • Nurislamova G, Sauvage X, Murashkin M, Islamgaliev R, Valiev R. Nanostructure and related mechanical properties of an Al-Mg-Si alloy processed by severe plastic deformation. Philos Mag Lett. 2008;88:459–466. doi: 10.1080/09500830802186938
  • Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG. Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy. Acta Mater. 2009;57:3123–3132. doi: 10.1016/j.actamat.2009.03.017
  • Liddicoat PV, Liao XZ, Zhao YH, et al. Nanostructural hierarchy increases the strength of aluminum alloys. Nature Comm. 2010;1:1–7. doi: 10.1038/ncomms1062
  • Valiev RZ, Enikeev NA, Murashkin MY, Kazykhanov VU, Sauvage X. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scripta Mater. 2010;63:949–952. doi: 10.1016/j.scriptamat.2010.07.014
  • Valiev RZ, Murashkin MY, Bobruk EV, Raab GI. Grain refinement and mechanical behavior of the Al alloy, subjected to the new SPD technique. Mater Trans. 2009;50:87–91. doi: 10.2320/matertrans.MD200821
  • Zhao YH, Zhu YT, Lavernia EJ. Strategies for improving tensile ductility of bulk nanostructured materials. Adv Eng Mater. 2010;12:769–778. doi: 10.1002/adem.200900335
  • Gertsman VY, Valiev RZ, Akhmadeev NA, Mishin OV. Deformation behaviour of ultrafine-grained materials. Mater Sci Forum. 1996;225–227:739–744. doi: 10.4028/www.scientific.net/MSF.225-227.739
  • Gertsman VY, Birringer R, Valiev RZ, Gleiter H. On the structure and strength of ultrafine-grained copper produced by severe plastic-deformation. Scripta Metall Mater. 1994;30:229–234. doi: 10.1016/0956-716X(94)90045-0
  • Valiev RZ, Korznikov AV, Mulyukov RR. Structure and properties of ultrafine-grained materials produced by severe plastic-deformation. Mater Sci Eng A. 1993;168:141–148. doi: 10.1016/0921-5093(93)90717-S
  • Segal VM, Ferrasse S, Alford F. Tensile testing of ultra fine grained metals. Mater Sci Eng A. 2006;422:321–326. doi: 10.1016/j.msea.2006.02.016
  • Baik SC, Hellmig RJ, Estrin Y, Kim HS. Modeling of deformation behavior of copper under equal channel angular pressing. Zeitschrift Fuer Metallkunde. 2003;94:754–760. doi: 10.3139/146.030754
  • Sabirov I, Murashkin MY, Valiev RZ. Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater Sci Eng A. 2013;560:1–24. doi: 10.1016/j.msea.2012.09.020
  • Abramova MM, Enikeev NA, Valiev RZ, et al. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater Lett. 2014;136:349–352. doi: 10.1016/j.matlet.2014.07.188
  • Nanostructured metals and alloys: processing, micro structure, mechanical properties and applications. Oxford: Woodhead; 2011.
  • Renk O, Hohenwarter A, Eder K, Kormout KS, Cairney JM, Pippan R. Increasing the strength of nanocrystalline steels by annealing: is segregation necessary? Scripta Mater. 2015;95:27–30. doi: 10.1016/j.scriptamat.2014.09.023
  • Ahn B, Zhilyaev AP, Lee HJ, Kawasaki M, Langdon TG. Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater Sci Eng A. 2015;635:109–117. doi: 10.1016/j.msea.2015.03.042
  • Kim HS, Ryu WS, Janecek M, Baik SC, Estrin Y. Effect of equal channel angular pressing on microstructure and mechanical properties of IF steel. Adv Eng Mater. 2005;7:43–46. doi: 10.1002/adem.200400146
  • Zhu YT, Liao XZ. Nanostructured metals —retaining ductility. Nature Mater. 2004;3:351–352. doi: 10.1038/nmat1141
  • Hart EW. Theory of tensile test. Acta Metall. 1967;15:351–355. doi: 10.1016/0001-6160(67)90211-8
  • Kim HS, Estrin Y. Ductility of ultrafine grained copper. Appl Phys Lett. 2001;79:4115–4117. doi: 10.1063/1.1426697
  • Zhang X, Wang H, Scattergood RO, et al. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn. Acta Mater. 2002;50:4823–4830. doi: 10.1016/S1359-6454(02)00349-X
  • Zhang X, Wang H, Scattergood RO, et al. Tensile elongation (110%) observed in ultrafine-grained Zn at room temperature. Appl Phys Lett. 2002;81:823–825. doi: 10.1063/1.1494866
  • Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC. Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res. 2002;17:5–8. doi: 10.1557/JMR.2002.0002
  • Hoeppel HW, Zhou ZM, Mughrabi H, Valiev RZ. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos Mag A. 2002;82:1781–1794. doi: 10.1080/01418610208235689
  • Wang YM, Chen MW, Zhou FH, Ma E. High tensile ductility in a nanostructured metal. Nature. 2002;419: 912–915. doi: 10.1038/nature01133
  • Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC. Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl Phys Lett. 2005;87:091904. doi: 10.1063/1.2034122
  • Mungole T, Kumar P, Kawasaki M, Langdon TG. A critical examination of the paradox of strength and ductility in ultrafine-grained metals. J Mater Res. 2014;29:2534–2546. doi: 10.1557/jmr.2014.272
  • Mungole T, Kumar P, Kawasaki M, Langdon TG. The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. J Mater Sci. 2015;50:3549–3561.
  • Lu L, Shen YF, Chen XH, Qian LH, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352. doi: 10.1126/science.1159610
  • Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu YT. Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys. Mater Sci Eng A. 2008;493:123–129. doi: 10.1016/j.msea.2007.11.074
  • Cheng S, Zhao YH, Zhu YT, Ma E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007;55:5822–5832. doi: 10.1016/j.actamat.2007.06.043
  • Zhao YH, Bingert JF, Zhu YT, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Appl Phys Lett. 2008;92:081903. doi: 10.1063/1.2870014
  • Valiev RZ, Murashkin MY, Kilmametov A, Straumal B, Chinh NQ, Langdon TG. Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J Mater Sci. 2010;45:4718–4724. doi: 10.1007/s10853-010-4588-z
  • Wu XL, Jiang P, Chen L, Yuan FP, Zhu YTT. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci USA. 2014;111:7197–7201. doi: 10.1073/pnas.1324069111
  • Wu XL, JIang P, Chen L, Zhang JF, Yuan FP, Zhu YT. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191. doi: 10.1080/21663831.2014.935821
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345:1455–1456. doi: 10.1126/science.1255940
  • Fang TH, Li WL, Tao NR, Lu K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590. doi: 10.1126/science.1200177
  • Mughrabi H, Hoeppel HW. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int J Fatigue. 2010;32:1413–1427. doi: 10.1016/j.ijfatigue.2009.10.007
  • Estrin Y, Vinogradov A. Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview. Int J Fatigue. 2010;32:898–907. doi: 10.1016/j.ijfatigue.2009.06.022
  • Vinogradov A, Ishida T, Kitagawa K, Kopylov VI. Effect of strain path on structure and mechanical behavior of ultrafine grain Cu-Cr alloy produced by equal-channel angular pressing. Acta Mater. 2005;53:2181–2192. doi: 10.1016/j.actamat.2005.01.046
  • Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov VI. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing. Acta Mater. 2002;50:1639–1651. doi: 10.1016/S1359-6454(01)00437-2
  • Orlov D, Raab G, Lamark TT, Popov M, Estrin Y. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 2011;59:375–385. doi: 10.1016/j.actamat.2010.09.043
  • Vinogradov A, Orlov D, Estrin Y. Improvement of fatigue strength of a Mg-Zn-Zr alloy by integrated extrusion and equal-channel angular pressing. Scripta Mater. 2012;67:209–212. doi: 10.1016/j.scriptamat.2012.04.021
  • Ueno H, Kakihata K, Kaneko Y, Hashimoto S, Vinogradov A. Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 2011;59:7060–7069. doi: 10.1016/j.actamat.2011.07.061
  • Medvedev A, Ng HP, Lapovok R, Estrin Y, Lowe TC, Anumalasetty VN. Comparison of laboratory-scale and industrial-scale equal channel angular pressing of commercial purity titanium. Mater. Lett. 2015;145:308–311.
  • Figueiredo RB, Barbosa ERD, Zhao XC, et al. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Mater Sci Eng A. 2014;619:312–318. doi: 10.1016/j.msea.2014.09.099
  • Hoeppel HW, Kautz M, Xu C, et al. An overview: fatigue behaviour of ultrafine-grained metals and alloys. Int J Fatigue. 2006;28:1001–1010. doi: 10.1016/j.ijfatigue.2005.08.014
  • Langdon TG. Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci. 2009;44:5998–6010. doi: 10.1007/s10853-009-3780-5
  • Barnes AJ. Superplastic forming 40 years and still growing. J Mater Eng Perform. 2007;16:440–454. doi: 10.1007/s11665-007-9076-5
  • Langdon TG. A unified approach to grain-boundary sliding in creep and superplasticity. Acta Metall Mater. 1994;42:2437–2443. doi: 10.1016/0956-7151(94)90322-0
  • Valiev RZ, Salimonenko DA, Tsenev NK, Berbon PB, Langdon TG. Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater. 1997;37:1945–1950. doi: 10.1016/S1359-6462(97)00387-4
  • Horita Z, Furukawa M, Nemoto M, Barnes AJ, Langdon TG. Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 2000;48:3633–3640. doi: 10.1016/S1359-6454(00)00182-8
  • Akamatsu H, Fujinami T, Horita Z, Langdon TG. Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP. Scripta Mater. 2001;44:759–764. doi: 10.1016/S1359-6462(00)00666-7
  • Horita Z, Matsubara K, Makii K, Langdon TG. A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys. Scripta Mater. 2002;47:255–260. doi: 10.1016/S1359-6462(02)00135-5
  • Furui M, Kitamura H, Anada H, Langdon TG. Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Mater. 2007;55:1083–1091. doi: 10.1016/j.actamat.2006.09.027
  • Figueiredo RB, Langdon TG. Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv Eng Mater. 2008;10:37–40. doi: 10.1002/adem.200700315
  • Avtokratova E, Sitdikov O, Markushev M, Mulyukov R. Extraordinary high-strain rate superplasticity of severely deformed Al-Mg-Sc-Zr alloy. Mater Sci Eng A. 2012;538:386–390. doi: 10.1016/j.msea.2012.01.041
  • Kawasaki M, Langdon TG. Developing superplasticity and a deformation mechanism map for the Zn-Al eutectoid alloy processed by high-pressure torsion. Mater Sci Eng A. 2011;528:6140–6145. doi: 10.1016/j.msea.2011.04.053
  • Han SZ, Lim C, Kim C, Kim S. The microstructural evolution during the equal channel angular pressing process and its relationship with the tensile behavior of oxygen-free copper. Metall Mater Trans A. 2005;36A:467–470. doi: 10.1007/s11661-005-0318-6
  • Habibi A, Ketabchi M, Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process. J Mater Processing Technol. 2011;211:1085–1090. doi: 10.1016/j.jmatprotec.2011.01.009
  • Higuera OF, Munoz JA, Cabrera JM. Mechanical properties of different coppers processed by equal channel angular pressing. Mater Sci Forum. 2011;667–669:713–718. doi: 10.4028/www.scientific.net/MSF.667-669.713
  • Edalati K, Imamura K, Kiss T, Horita Z. Equal-Channel angular pressing and high-pressure torsion of pure copper: evolution of electrical conductivity and hardness with strain. Mater Trans. 2012;53:123–127. doi: 10.2320/matertrans.MD201109
  • Jang Y, Kim S, Han S, Lim C, Kim C, Goto M. Role of trace elements on tensile behavior of accumulative roll-bonded pure copper. J Mater Sci. 2005;40:3527–3529. doi: 10.1007/s10853-005-2879-6
  • Hosseini SA, Manesh HD. High-strength, high-conducti vity ultra-fine grains commercial pure copper produced by ARB process. Mater Des. 2009;30:2911–2918. doi: 10.1016/j.matdes.2009.01.012
  • Takata N, Lee SH, Tsuji N. Ultrafine grained copper alloy sheets having both high strength and high electric conductivity. Mater Lett. 2009;63:1757–1760. doi: 10.1016/j.matlet.2009.05.021
  • Lee S, Matsunaga H, Sauvage X, Horita Z. Strengthening of Cu-Ni-Si alloy using high-pressure torsion and aging. Mater Characterization. 2014;90:62–70. doi: 10.1016/j.matchar.2014.01.006
  • Shangina DV, Gubicza J, Dodony E, et al. Improvement of strength and conductivity in Cu-alloys with the application of high pressure torsion and subsequent heat-treatments. J Mater Sci. 2014;49:6674–6681. doi: 10.1007/s10853-014-8339-4
  • Bobruk EV, Murashkin MY, Kazykhanov VU, Valiev RZ. Aging behavior and properties of ultrafine-grained aluminum alloys of Al-Mg-Si system. Rev Adv Mater Sci. 2012;31:109–115.
  • Murashkin MY, Sabirov I, Kazykhanov VU, Bobruk EV, Dubravina AA, Valiev RZ. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J Mater Sci. 2013;48:4501–4509. doi: 10.1007/s10853-013-7279-8
  • Valiev RZ, Murashkin MY, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity. Scripta Mater. 2014;76:13–16. doi: 10.1016/j.scriptamat.2013.12.002
  • Cubero-Sesin JM, In H, Arita M, Iwaoka H, Horita Z. High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. J Mater Sci. 2014;49:6550–6557. doi: 10.1007/s10853-014-8240-1
  • Cubero-Sesin JM, Arita M, Watanabe M, Horita Z. High strength and high electrical conductivity of UFG Al-2% Fe alloy achieved by high-pressure torsion and aging. IOP Conf Series: Mater Sci Eng. 2014;63:012117. doi: 10.1088/1757-899X/63/1/012117
  • Berkowitz AE, Mitchell JR, Carey MJ, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett. 1992;68:3745–3748. doi: 10.1103/PhysRevLett.68.3745
  • Xiao JQ, Jiang JS, Chien CL. Giant magnetoresistance in nonmultilayer magnetic systems. Phys Rev Lett. 1992;68:3749–3752. doi: 10.1103/PhysRevLett.68.3749
  • Takanashi K, Park J, Sugawara T, et al. Giant magnetoresistance and microstructure in Cr-Fe and Cu-Co heterogeneous alloys. Thin Solid Films. 1996;275:106–110. doi: 10.1016/0040-6090(95)07064-8
  • Wang WD, Zhu FW, Weng J, Xiao JM, Lai WY. Nanoparticle morphology in a granular Cu-Co alloy with giant magnetoresistance. Appl Phys Lett. 1998;72:1118–1120. doi: 10.1063/1.120942
  • Kim IJ, Takeda H, Echigoya J, Kataoka N, Fukamichi K, Shimada Y. The effect of aging on GMR and microstructure of Co10Cu90 ribbons. Mater Sci Eng A. 1996;217–218:363–366. doi: 10.1016/S0921-5093(96)10330-0
  • Aizawa T, Zhou C. Nanogranulation process into magneto-resistant Co-Cu alloy on the route of bulk mechanical alloying. Mater Sci Eng A. 2000;285:1–7. doi: 10.1016/S0921-5093(00)00709-7
  • Larde R, Le Breton JM. Influence of the milling conditions on the magnetoresistive properties of a Cu-80(Fe0.7Co0.3)(20) granular alloy elaborated by mechanical alloying. J Magnetism and Magnetic Mater. 2005;290–291:1120–1122. doi: 10.1016/j.jmmm.2004.11.471
  • Rattanasakulthong W, Sirisathitkul C. Large negative magnetoresistance in capsulated Co-Cu powder prepared by mechanical alloying. Physica B. 2005;369:160–167. doi: 10.1016/j.physb.2005.08.010
  • Massalski TB, Murray JL, Bennett LH, Baker H, Kacprzak L. Binary phase diagrams. Metals Park, OH: American Society of Metals; 1987.
  • Suehiro K, Nishimura S, Horita Z, Mitani S, Takanashi K, Fujimori H. High-pressure torsion for production of magnetoresistance in Cu-Co alloy. J Mater Sci. 2008;43:7349–7353. doi: 10.1007/s10853-008-2813-9
  • Nishihata S, Suehiro K, Arita M, Masuda M, Horita Z. High-pressure torsion for giant magnetoresistance and better magnetic properties. Adv Eng Mater. 2010;12:793–797. doi: 10.1002/adem.201000033
  • Skripnyuk VM, Rabkin E, Estrin Y, Lapovok R. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy. Acta Mater. 2004;52:405–414. doi: 10.1016/j.actamat.2003.09.025
  • Krystian M, Zehetbauer MJ, Kropik H, Mingler B, Krexner G. Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing. J Alloys Compd. 2011;509S:449–455. doi: 10.1016/j.jallcom.2011.01.029
  • Jorge AM, Prokofiev E, de Lima GF, et al. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int J Hydrogen Energy. 2013;38:8306–8312. doi: 10.1016/j.ijhydene.2013.03.158
  • Dornheim M. Thermodynamics of metal hydrides: tailoring reaction enthalpies of hydrogen storage materials. In: Moreno-Pirajan JC, editor. Thermodyna mics—interaction studies—–solids, liquids and gases. Rijeka: InTech; 2011. p. 891–918.
  • Grill A, Horky J, Krexner G, Zehetbauer M. Long-term hydrogen storage Mg and ZK 60 after severe plastic deformation. Int J Hydr Energy. Forthcoming 2015.
  • Botta WJ, Floriano R, Ishikawa TT, et al. Ultra-fine grained Mg and Mg alloys for hydrogen storage. NANO2014. Moscow: Lomonosov Moscow State University; 2014. unpublished.
  • Huot J, Skryabina NY, Fruchart D. Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties. Metals. 2012;2:329–343. doi: 10.3390/met2030329
  • Leiva DR, Floriano R, Huot J, et al. Nanostructured MgH2 prepared by cold rolling and cold forging. J Alloys Compd. 2011;509S:444–448. doi: 10.1016/j.jallcom.2011.01.097
  • Schober T, Westlake DG. The activation of FeTi for hydrogen storage—A different view. Scripta Metall. 1981;15:913–918. doi: 10.1016/0036-9748(81)90277-5
  • Mizuno T, Morozumi T. Titanium concentration in FeTiX (1 Less-Than-or-Equal-to X Less-Than-or-Equal-to 2) alloys and its effect on hydrogen storage properties. J Less-Common Metals. 1982;84:237–244. doi: 10.1016/0022-5088(82)90148-5
  • Kulshreshtha SK, Jayakumar OD, Bhatt KB. Hydriding characteristics of palladium and platinum alloyed FeTi. J Mater Sci. 1993;28:4229–4233. doi: 10.1007/BF00351259
  • Kulshreshtha SK, Sasikala R, Suryanarayana P, Singh AJ, Iyer RM. Studies on hydrogen storage material FeTi—effect of Sn substitution. Mater Res Bulletin. 1988;23:333–340. doi: 10.1016/0025-5408(88)90006-2
  • Su LY, Liu FJ, Bao DY. An advanced TiFe series hydrogen storage material with high hydrogen capacity and easily activated properties. Int J Hydrogen Energ. 1990;15:259–262. doi: 10.1016/0360-3199(90)90045-Z
  • Chung HS, Lee JY. Hydriding and dehydriding reaction-rate of FeTi intermetallic compound. Int J Hydrogen Energ. 1985;10:537–542. doi: 10.1016/0360-3199(85)90084-9
  • Zuchner H, Kirch G. Auger-Electron spectroscopy investigation of the activation of TiFe for hydrogen uptake. J Less-Common Met. 1984;99:143–150. doi: 10.1016/0022-5088(84)90344-8
  • Trudeau ML, Schulz R, Zaluski L, et al. Nanocrystalline iron-titanium alloys prepared by high-energy mechanical deformation. Mech Alloy. 1992;88:537–544.
  • Zaluski L, Tessier P, Ryan DH, et al. Amorphous and nanocrystalline Fe-Ti prepared by Ball-Milling. J Mater Res. 1993;8:3059–3068. doi: 10.1557/JMR.1993.3059
  • Edalati K, Matsuda J, Iwaoka H, Toh S, Akiba E, Horita Z. High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int J Hydrogen Energ. 2013;38:4622–4627. doi: 10.1016/j.ijhydene.2013.01.185
  • Edalati K, Matsuda J, Arita M, Daio T, Akiba E, Horita Z. Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl Phys Lett. 2013;103:143902. doi: 10.1063/1.4823555
  • Edalati K, Matsuda J, Yanagida A, Akiba E, Horita Z. Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences. Int J Hydrogen Energ. 2014;39:15589–15594. doi: 10.1016/j.ijhydene.2014.07.124
  • Mujica A, Rubio A, Munoz A, Needs RJ. High-pressure phases of group-IV, III-V, and II-VI compounds. Rev Mod Phys. 2003;75:863–912. doi: 10.1103/RevModPhys.75.863
  • Islamgaliev RK, Kuzel R, Mikov SN, et al. Structure of silicon processed by severe plastic deformation. Mater Sci Eng A. 1999;266:205–210. doi: 10.1016/S0921-5093(99)00030-1
  • Ikoma Y, Hayano K, Edalati K, Saito K, Guo QX, Horita Z. Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion. Appl Phys Lett. 2012;101: 121908. doi: 10.1063/1.4754574
  • Ikoma Y, Hayano K, Edalati K, et al. Fabrication of nanograined silicon by high-pressure torsion. J Mater Sci. 2014;49:6565–6569. doi: 10.1007/s10853-014-8250-z
  • Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B. Structure and deformation behaviour of armco iron subjected to severe plastic deformation. Acta Mater. 1996;44:4705–4712. doi: 10.1016/S1359-6454(96)00156-5
  • Ito Y, Horita Z. Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater Sci Eng A. 2009;503:32–36. doi: 10.1016/j.msea.2008.03.055
  • Delley B, Steigmeier EF. Quantum confinement in Si nanocrystals. Phys Rev B. 1993;47:1397–1400. doi: 10.1103/PhysRevB.47.1397
  • Islamgaliev RK, Kuzel R, Obraztsova ED, Burianek J, Chmelik F, Valiev RZ. TEM, XRD and Raman scattering of germanium processed by severe deformation. Mater Sci Eng A. 1998;249:152–157. doi: 10.1016/S0921-5093(98)00574-7
  • Ikoma Y, Ejiri Y, Hayano K, Saito K, Guo QX, Horita Z. Nanograin formation of GaAs by high-pressure torsion. Philos Mag Lett. 2014;94:1–8. doi: 10.1080/09500839.2013.852265
  • Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F. Optical gain in silicon nanocrystals. Nature. 2000;408:440–444. doi: 10.1038/35044012
  • Cullis AG, Canham LT. Visible-light emission due to quantum size effects in highly porous crystalline silicon. Nature. 1991;353:335–338. doi: 10.1038/353335a0
  • Ruckschloss M, Landkammer B, Veprek S. Light-emitting nanocrystalline silicon prepared by dry processing—the effect of crystallite size. Appl Phys Lett. 1993;63:1474–1476. doi: 10.1063/1.109660
  • Croitoru MD, Shanenko AA, Peeters FM. Dependence of superconducting properties on the size and shape of a nanoscale superconductor: from nanowire to film. Phys Rev B. 2007;76:024511. doi: 10.1103/PhysRevB.76.024511
  • Suematsu H, Kato M, Ishida T. Critical temperature in nanoscopic superconductors. 25th International Conference on Low Temperature Physics (LT25), PT 5a; 2009:150:052250.
  • Schweigert VA, Peeters FM, Deo PS. Vortex phase diagram for mesoscopic superconducting disks. Phys Rev Lett. 1998;81:2783–2786. doi: 10.1103/PhysRevLett.81.2783
  • Guo Y, Zhang YF, Bao XY, et al. Superconductivity modulated by quantum size effects. Science. 2004;306:1915–1917. doi: 10.1126/science.1105130
  • Savolainen M, Touboltsev V, Koppinen P, Riikonen KP, Arutyunov K. Ion beam sputtering for progressive reduction of nanostructures dimensions. Appl Phys A. 2004;79:1769–1773. doi: 10.1007/s00339-004-2709-8
  • Nishizaki T, Lee S, Horita Z, Sasaki T, Kobayashi N. Superconducting properties in bulk nanostructured niobium prepared by high-pressure torsion. Physica C. 2013;493:132–135. doi: 10.1016/j.physc.2013.03.046
  • Lee S, Horita Z. High-pressure torsion for pure chromium and niobium. Mater Trans. 2012;53:38–45. doi: 10.2320/matertrans.MD201131
  • Edalati K, Daio T, Lee S, et al. High strength and superconductivity in nanostructured niobium-titanium alloy by high-pressure torsion and annealing: significance of elemental decomposition and supersaturation. Acta Mater. 2014;80:149–158. doi: 10.1016/j.actamat.2014.07.065
  • Poole JCP, Farach HA, Creswick RJ, Prozorov R. Superconductivity. 2nd ed. Amsterdam: Elsevier; 2007.
  • Rogl G, Rogl P, Bauer E, Zehetbauer M. Severe plastic deformation, A tool to enhance thermoelectric performance. In: Koumoto K, Mori T, editors. Thermoelectric nanomaterials. Berlin: Springer; 2013. p. 193–254.
  • Dresselhaus MS, Heremans JP. Recent developments in low dimensional thermoelectric material. In: Rowe DM, editor. Thermoelectric handbook. Macro to nanostructured materials. Boca Raton, FL, USA: CRC Press; 2004. p. 39.1–39.20.
  • Ashida M, Hamachiyo T, Hasezaki K, Matsunoshita H, Kai M, Horita Z. Texture of bismuth telluride-based thermoelectric semiconductors processed by high-pressure torsion. J Phys Chem Solid. 2009;70:1089–1092. doi: 10.1016/j.jpcs.2009.06.002
  • Hayashi T, Horio Y, Takizawa H. Equal channel angular extrusion technique for controlling the texture of n-type Bi2Te3 based thermoelectric materials. Mater Trans. 2010;51:1914–1918. doi: 10.2320/matertrans.M2010065
  • Zhang L, Grytsiv A, Bonarski B, et al. Impact of high pressure torsion on the microstructure and physical properties of Pr0.67Fe3CoSb12, Pr0.71Fe3.5Ni0.5Sb12, and Ba0.06Co4Sb12. J Alloys Compd. 2010;494:78–83. doi: 10.1016/j.jallcom.2010.01.042
  • Rogl G, Grytsiv A, Rogl P, et al. Dependence of thermoelectric behaviour on severe plastic deformation parameters: a case study on p-type skutterudite DD0.60Fe3CoSb12. Acta Mater. 2013;61:6778–6789. doi: 10.1016/j.actamat.2013.07.052
  • Rogl G, Grytsiv A, Rogl P, et al. n-Type skutterudites (R,Ba,Yb)(y)Co4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT approximate to 2.0. Acta Mater. 2014;63:30–43. doi: 10.1016/j.actamat.2013.09.039
  • Rogl G, Grytsiv A, Heinrich P, et al. New p-type skutterudites DD0.7Fe2.7Co1.3Sb12-xXx (X = Ge, Sn) reaching ZT > 1.3. Acta Mater. 2015;91:227–238. doi: 10.1016/j.actamat.2015.03.008
  • Rogl G, Grytsiv A, Bursik J, et al. Changes in microstructure and physical properties of skutterudites after severe plastic deformation. Phys Chem Chem Phys. 2015;17:3715–3722. doi: 10.1039/C4CP05230G
  • Straumal BB, Gornakova AS, Mazilkin AA, et al. Phase transformations in the severely plastically deformed Zr-Nb alloys. Mater Lett. 2012;81:225–228. doi: 10.1016/j.matlet.2012.04.153
  • Lowe TC, Valiev RZ. Frontiers of bulk nanostructured metals in biomedical applications. In: Tiwari A, Nordin AN, editors. Advanced biomaterials and biodevices. Beverly, MA: Wiley-Scrivener; 2014. p. 3–52.
  • Valiev RZ, Semenova IP, Latysh VV, Rack H, Lowe TC, Petruzelka J, Dluhos L, Hrusak D, Sochova J. Nanostructured titanium for biomedical applications. Adv Eng Mater. 2008;10:B15–B17. doi: 10.1002/adem.200800026
  • Park JW, Kim YJ, Park CH, Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater. 2009;5:3272–3280. doi: 10.1016/j.actbio.2009.04.038
  • Mishnaevsky L, Levashov E, Valiev RZ, et al. Nanostructured titanium-based materials for medical implants: modeling and development. Mater Sci Eng R. 2014;81:1–19. doi: 10.1016/j.mser.2014.04.002
  • Bagherifard S, Gheichi R, Khademhosseini A, Guagliano M. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. ACS Appl Mater Interfaces. 2014;6:7963–7985. doi: 10.1021/am501119k
  • Estrin Y, Kasper C, Diederichs S, Lapovok R. Accelerated growth of preosteoblastic cells on ultrafine grained titanium. J Biomed Mater Res Part A. 2009;90A:1239–1242. doi: 10.1002/jbm.a.32174
  • Estrin Y, Kim HE, Lapovok R, Ng HP, Jo JH. Mechanical strength and biocompatibility of ultrafine-grained commercial purity titanium. Biomed Res Int. 2013; 2013:6, Article ID 914764. doi:10.1155/2013/914764.
  • Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1:30–42. doi: 10.1016/j.jmbbm.2007.07.001
  • Furuta T, Hara M, Horita Z, Kuramoto S. Severe plastic deformation in gum metal with composition at the structural stability limit. Int J Mater Res. 2009;100: 1217–1221. doi: 10.3139/146.110184
  • Yilmazer H, Niinomi M, Nakai M, et al. Mechanical properties of a medical beta-type titanium alloy with specific microstructural evolution through high-pressure torsion. Mater Sci Eng C. 2013;33:2499–2507. doi: 10.1016/j.msec.2013.01.056
  • Sulkowski B, Panigrahi A, Ozaltin K, Lewandowska M, Mikulowski B, Zehetbauer M. Evolution of strength and structure during SPD processing of Ti-45Nb alloys: experiments and simulations. J Mater Sci. 2014;49:6648–6655. doi: 10.1007/s10853-014-8320-2
  • Panigrahi A, Bönisch M, Waitz T, et al. Phase transformations and mechanical properties of biocompatible Ti-16.1Nb processed by severe plastic deformation. J Alloys Compd. 2015;628:434–441. doi: 10.1016/j.jallcom.2014.12.159
  • Matsumoto H, Watanabe S, Hanada S. Microstructures and mechanical properties of metastable beta TiNbSn alloys cold rolled and heat treated. J Alloys Compd. 2007;439:146–155. doi: 10.1016/j.jallcom.2006.08.267
  • Panigrahi A, Sulkowski B, Waitz T, et al. Mechanical properties and texture evolution in biocompatible Ti-45Nb alloy processed by severe plastic deformation. J Mech Beh Biomed Mater. 2015; submitted.
  • Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV. Magnesium as a biodegradable and bioabsorbable material for medical implants. J Mater. 2009;61:31–34.
  • Waizy H, Seitz JM, Reifenrath J, et al. Biodegradable magnesium implants for orthopedic applications. J Mater Sci. 2013;48:39–50. doi: 10.1007/s10853-012-6572-2
  • Kubasek J, Vojtech D, Capek J. Properties of biodegradable alloys usable for medical purposes. Acta Physica Polonica A. 2012;122:520–523.
  • Weber J. United States patent No. 8,435,281 B2. 2013.
  • Yamashita A, Horita Z, Langdon TG. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci Eng A. 2001;300:142–147. doi: 10.1016/S0921-5093(00)01660-9
  • Agnew SR, Stoica GM, Chen LJ, Lillo TM, Macheret J, Liaw PK. Equal channel angular processing of magnesium alloys. In: Zhu YT, Langson TG, et al., editors. Ultrafine Grained Mater II, TMS Meeting. TMS Publications, USA; 2002.
  • Kainer KU, Huang Y, Peng Q, Hort N. Nanostructured magnesium alloys. Nanostructured metals: Fundementals to applications. Riso International Symposium on Meterial Science. Roskilde: Denmark Tekniske Universitet, Riso Nationallaboratoriet for Baeredygtig Energi. Proceedings 2009;30:81–99.
  • Guo W, Wang QD, Ye B, Zhou H. Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging. J Alloys Compd. 2013;558:164–171. doi: 10.1016/j.jallcom.2013.01.035
  • Shumilin SE, Janecek M, Isaev NV, Minarik P, Kral R. Low temperature plasticity of ultrafine-grained AE42 and AZ31 magnesium alloys. Adv Eng Mater. 2013;15:352–357. doi: 10.1002/adem.201200324
  • Wang H, Estrin Y, Fu H, Song G, Zuberova Z. The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31. Adv Eng Mater. 2007;9:967–972. doi: 10.1002/adem.200700200
  • Hadzima B, Janecek M, Suchy P, Mueller J, Wagner L. Microstructure and corrosion properties of fine-grained Mg-based alloys. Mater Sci Forum. 2008;584–586:994–999. doi: 10.4028/www.scientific.net/MSF.584-586.994
  • Minarik P, Kral R, Janecek M. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl Surf Sci. 2013;281:44–48. doi: 10.1016/j.apsusc.2012.12.096
  • Hofstetter J, Becker M, Martinelli E, et al. High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent biodegradation performance. J Mater. 2014;66:566–572.
  • Hofstetter J, Martinelli E, Weinberg AM, et al. Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corros Sci. 2015;91:29–36. doi: 10.1016/j.corsci.2014.09.008
  • Horky J, Ghaffar A, Grill A, et al. Mechanical properties and microstructure of HPT-processed Mg-Zn-Ca alloys for biodegradable implants. In: Beausir B, Kasprzak N, Toth LS, editors. 6th international conference on nanomaterials by severe plastic deformation (NANOSPD6). Metz: University Press of Lorrain University; 2014.
  • Zehetbauer M. Effects of nonequilibrium vacancies on strengthening. Key Eng Mater. 1994;97–98:287–306. doi: 10.4028/www.scientific.net/KEM.97-98.287
  • Zehetbauer MJ, Steiner G, Schafler E, Korznikov A, Korznikova E. Deformation induced vacancies with severe plastic deformation: measurements and modelling. Mater Sci Forum. 2006;503–504:57–64. doi: 10.4028/www.scientific.net/MSF.503-504.57
  • Hampshire JM, Hardie D. Hardening of pure magnesium by lattice-defects. Acta Metallurgica. 1974;22:657–663. doi: 10.1016/0001-6160(74)90163-1
  • Valiev RZ. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Mater. 2004;3:511–516. doi: 10.1038/nmat1180
  • Ivanisenko Y, Darbandi A, Dasgupta S, Kruk R, Hahn H. Bulk nanostructured materials: non-mechanical synthesis. Adv Eng Mater. 2010;12:666–676. doi: 10.1002/adem.201000131
  • Valiev RZ, Langdon TG. The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques. Adv Eng Mater. 2010;12:677–691. doi: 10.1002/adem.201000019