1,196
Views
10
CrossRef citations to date
0
Altmetric
Original Reports

Carbon Displacement-Induced Single Carbon Atomic Chain Formation and its Effects on Sliding of SiC Fibers in SiC/graphene/SiC Composite

, &
Pages 55-61 | Received 02 Aug 2015, Accepted 03 Sep 2015, Published online: 03 Nov 2015

References

  • Katoh Y, Snead LL, Henager CH Jr., et al. Current status and critical issues for development of SiC composites for fusion applications. J Nucl Mater. 2007;367–370:659–671. doi: 10.1016/j.jnucmat.2007.03.032
  • Katoh Y, Snead LL, Szlufarska I, Weber WJ. Radiation effects in SiC for nuclear structural applications. Curr Opin Solid State and Mater Sci. 2012;16:143–152. doi: 10.1016/j.cossms.2012.03.005
  • Katoh Y, Wilson DF, Forsberg CW. Assessment of silicon carbide composites for advanced salt-cooled reactors. ORNL/TM-2007/168, Oak Ridge, TN: Oak Ridge National Laboratory; 2007.
  • Hallstadius L, Johnson S, Lahoda E. Cladding for high performance fuel. Prog Nucl Energy. 2012;57:71–76. doi: 10.1016/j.pnucene.2011.10.008
  • Cheng T, Keiser JR, Brady MP, Terrani KA, Pint BA. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. J Nucl Mater. 2012;427:396–400. doi: 10.1016/j.jnucmat.2012.05.007
  • Pint BA, Terrani KA, Brady MP, Cheng T, Keiser JR. High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. J Nucl Mater. 2013;440:420–427. doi: 10.1016/j.jnucmat.2013.05.047
  • Vashishta P, Kalia PK, Nakano A. Large-scale atomistic simulations of dynamic fracture. Comput Sci Eng. 1995;1:56–65. doi: 10.1109/5992.790588
  • Deck CP, Khalifa HE, Sammuli B, Hilsabeck T, Back CA. Fabrication of SiC–SiC composites for fuel cladding in advanced reactor designs. Prog Nucl Energy. 2012;57:38–45. doi: 10.1016/j.pnucene.2011.10.002
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112:6472–6486. doi: 10.1063/1.481208
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568. doi: 10.1103/PhysRevB.39.5566
  • Ziegler JF, Biersack JP, Littmark U. Stopping and ranges of ions in matter. Oxford: Pergamon Press; 1985.
  • Bacon GE. The interlayer spacing of graphite. Acta Cryst. 1951;4:558–561. doi: 10.1107/S0365110X51001781
  • Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano. 2011;5:26–41. doi: 10.1021/nn102598m
  • Gulans A, Krasheninnikov AV, Puska MJ, Nieminen RM. Bound and free self-interstitials in graphite and bilayer graphene: a computational study. Phys Rev B. 2011;84:024114. doi: 10.1103/PhysRevB.84.024114
  • Goresy AE, Donnay G. A new allotropic form of carbon from the ries crater. Science. 1968;161:363–364. doi: 10.1126/science.161.3839.363
  • Castelli IE, Salvestrini P, Manini N. Mechanical properties of carbynes investigated by ab initio total-energy calculations. Phys Rev B. 2012;85:214110. doi: 10.1103/PhysRevB.85.214110
  • Zanolli Z, Onida G, Charlier JC. Quantum spin transport in carbon chains. ACS Nano. 2010;4:5174–5180. doi: 10.1021/nn100712q
  • Lang N, Avouris P. Electrical conductance of parallel atomic wires. Phys Rev B. 2000;62:7325–7329. doi: 10.1103/PhysRevB.62.7325
  • Lagow RJ, Kampa JJ, Wei HC, et al. Synthesis of linear acetylenic carbon: the “sp” carbon allotrope. Science. 1995;267:362–367. doi: 10.1126/science.267.5196.362
  • Kavan L, Hlavatý J, Kastner J, Kuzmany H. Electrochemical carbyne from perfluorinated hydrocarbons: synthesis and stability studied by Raman scattering. Carbon. 1995;33:1321–1329. doi: 10.1016/0008-6223(95)00081-N
  • Casari CS, Bassi AL, Ravagnan L, et al. Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys Rev B. 2004;69:075422. doi: 10.1103/PhysRevB.69.075422
  • Cataldo F. Polyynes: synthesis, properties, and applications. Boca Raton: CRC Press; 2005.
  • Jin C, Lan H, Peng L, Suenaga K, Iijima S. Deriving carbon atomic chains from graphene. Phys Rev Lett. 2009;102:205501. doi: 10.1103/PhysRevLett.102.205501
  • Hobi E, Pontes RB, Fazzio A, da Silva AJR. Formation of atomic carbon chains from graphene nanoribbons. Phys Rev B. 2010;81:201406. doi: 10.1103/PhysRevB.81.201406
  • Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U. From graphene constrictions to single carbon chains. New J Phys. 2009;11:083019. doi: 10.1088/1367-2630/11/8/083019
  • Börrnert F, Börrnert C, Gorantla S, et al. Single-wall-carbon-nanotube/single-carbon-chain molecular junctions. Phys Rev B. 2010;81:085439. doi: 10.1103/PhysRevB.81.085439
  • Castelli IE, Ferri N, Onida G, Manini N. Carbon sp chains in graphene nanoholes. J Phys: Condens Matter. 2012;24:104019.
  • Ataca C, Ciraci S. Perpendicular growth of carbon chains on graphene from first-principles. Phys Rev B. 2011;83:235417. doi: 10.1103/PhysRevB.83.235417
  • Wang Y, Lin ZZ, Zhang W, Zhuang J, Ning XJ. Pulling long linear atomic chains from graphene: molecular dynamics simulations. Phys Rev B. 2009;80:233403. doi: 10.1103/PhysRevB.80.233403