1,050
Views
1
CrossRef citations to date
0
Altmetric
Original Report

Enhanced Electrical Activation in In-Implanted Si0.35Ge0.65 by C Co-Doping

, , , , , , , , , & show all
Pages 29-34 | Received 29 Nov 2015, Accepted 18 Mar 2016, Published online: 21 Apr 2016

References

  • Yamauchi J, Aoki N. Deactivation mechanism of In atoms doped in a Si crystal and reactivation due to codoping with B and C. Phys Rev B. 2005;71:205205. doi: 10.1103/PhysRevB.71.205205
  • Decoster S, de Vries B, Wahl U, Correia JG, Vantomme A. Lattice location study of implanted In in Ge. J Appl Phys. 2009;105:083522. doi: 10.1063/1.3110104
  • d'Acapito F, Shimizu Y, Scalese S, Italia M, Alippi P, Grasso S. Experimental determination of the local geometry around In and In-C complexes in Si. Appl Phys Lett. 2006;88:212102. doi: 10.1063/1.2206703
  • Hull R and Bean JC. Germanium silicon: physics and materials, semiconductors and semimetals. San Diego: Academic; 1999.
  • Geballe TH and Morin FJ. Ionization energies of groups III and V elements in Germanium. Phys Rev. 1954;95:1085–1086. doi: 10.1103/PhysRev.95.1085
  • Feng R, Kremer F, Sprouster DJ, et al. Structural and electrical properties of In-implanted Si1−xGex alloys. J Appl Phys. 2016;119:025709. doi: 10.1063/1.4940046
  • Yonenaga I and Sakurai M. Bond lengths in Ge1−xSix crystalline alloys grown by the Czochralski method. Phys Rev B. 2001;64:113206. doi: 10.1103/PhysRevB.64.113206
  • Yonenaga I and Ayuzawa T. Segregation coefficients of various dopants in SixGe1−x (0.93 < x < 0.96) single crystals. J Cryst Growth. 2006;297:14–19. doi: 10.1016/j.jcrysgro.2006.08.044
  • Solmi S, Parisini A, Bersani M, et al. Investigation on indium diffusion in silicon. J Appl Phys. 2002;92:1361. doi: 10.1063/1.1492861
  • Duffy R, Shayesteh M, Kazadojev I, Yu R. Germanium doping challenges. Paper presented at: 13th International Workshop on Junction Technology (IWJT); 2013 June 6–7; Kyoto, Japan.
  • Boudinov H, de Souza JP, Saul CK. Enhanced electrical activation of indium coimplanted with carbon in a silicon substrate. J Appl Phys. 1999;86:5909–5911. doi: 10.1063/1.371611
  • Scalese S, Italia M, La Magna A, et al. Diffusion and electrical activation of indium in silicon. J Appl Phys. 2003;93:9773. doi: 10.1063/1.1572547
  • d’Acapito F, Shimizu Y, Scalese S, Italia M, Alippi P, Grasso S. The effect of thermal treatments on the local geometry around indium in In and In+C high dose implanted Si. Nucl Instr and Meth in Phys Res B. 2006;253:59–62. doi: 10.1016/j.nimb.2006.10.014
  • Tessema G, Vianden R. Indium–carbon pairs in germanium. J Phys Condens Matter. 2003;15:5297–5306. doi: 10.1088/0953-8984/15/30/311
  • Chroneos A. Effect of carbon on dopant–vacancy pair stability in germanium. Semicond Sci Technol. 2011;26:095017. doi: 10.1088/0268-1242/26/9/095017
  • Feng R, Kremer F, Sprouster DJ, et al. Enhanced electrical activation in In-implanted Ge by C co-doping. Appl Phys Lett. 2015;107:212101. doi: 10.1063/1.4936331
  • Osten HJ, Lippert G, Gaworzewski P, Sorge R. Impact of low carbon concentrations on the electrical properties of highly boron doped SiGe layers. Appl Phys Lett. 1997;71:1522–1524. doi: 10.1063/1.119955
  • Noda T, Lee D, Shim H, Sakuraba M, Matsuura T, Murota J. Doping and electrical characteristics of in-situ heavily B-doped Si1−x−yGexCy films epitaxially grown using ultraclean LPCVD. Thin Solid Films. 2000;380:57–60. doi: 10.1016/S0040-6090(00)01469-3
  • Noh J, Takehiro S, Sakuraba M, Murota J. Relationship between impurity (B or P) and carrier concentration in SiGe(C) epitaxial film produced by thermal treatment. Appl Surf Sci. 2004;224:77–81. doi: 10.1016/j.apsusc.2003.08.046
  • Inouea K, Taishib T, Tokumotoa Y, et al. Czochralski growth of heavily indium-doped Si crystals and co-doping effects of group-IV elements. J Cryst Growth. 2014;393:45–48. doi: 10.1016/j.jcrysgro.2013.10.033
  • Lanzerath F, Buca D, Trinkaus H, et al. Boron activation and diffusion in silicon and strained silicon-on-insulator by rapid thermal and flash lamp annealings. J Appl Phys. 2008;104:044908. doi: 10.1063/1.2968462
  • Mirabella S, Impellizzeri G, Piro AM, Bruno E, Grimaldi MG. Activation and carrier mobility in high fluence B implanted germanium. Appl Phys Lett. 2008;92:251909. doi: 10.1063/1.2949088
  • Chao Y-L, Prussin S, Woo JCS, Scholz R. Preamorphization implantation-assisted boron activation in bulk germanium and germanium-on-insulator. Appl Phys Lett. 2005;87:142102. doi: 10.1063/1.2076440
  • Osten HJ. Effects of carbon on boron diffusion in SiGe: principles and impact on bipolar devices. J Vac Sci Technol B. 1998;16:1750–1753. doi: 10.1116/1.590048
  • Rajendran K, Schoenmaker W. Modeling of complete suppression of boron out-diffusion in Si1−xGex by carbon incorporation. Solid-State Electron. 2001;45:229–233. doi: 10.1016/S0038-1101(01)00012-0
  • Rizk S, Haddara YM, Sibaja-Hernandez A. Modeling the suppression of boron diffusion in Si/SiGe due to carbon incorporation. J Vac Sci Technol B. 2006;24:1365–1370. doi: 10.1116/1.2198858
  • Eberl K, Iyer SS, Zollner S, Tsang JC, LeGoues FK. Growth and strain compensation effects in the ternary Si1−x−yGexCy alloy system. Appl Phys Lett. 1992;60:3033–3035. doi: 10.1063/1.106774
  • Amour AST, Liu CW, Sturm JC, Lacroix Y, Thewalt MLW. Defect-free band-edge photoluminescence and band gap measurement of pseudomorphic Si1−x−yGexCy alloy layers on Si (100). Appl Phys Lett. 1995;67:3915–3917. doi: 10.1063/1.115316
  • Mukerjee S, Venkataraman V. Ellipsometric investigation of strain reduction in Si1−x−yGexCy layers compared to Si1−xGex layers on silicon. Solid-State Electron. 2001;45:1875–1877. doi: 10.1016/S0038-1101(01)00226-X
  • Soref RA. Optical band gap of the ternary semiconductor Si1−x−yGexCy. J Appl Phys. 1991;70:2470–2472. doi: 10.1063/1.349403
  • Osten HJ. Band-gap changes and band offsets for ternary Si1−x−yGexCy alloys on Si(001). J Appl Phys. 1998;84:2716–2721. doi: 10.1063/1.368383
  • Rezki M, Tadjer A, Abid H, Aourag H. Electronic structure of Si1−x−yCxGey. Mater Sci Eng B. 1998;55:157–161. doi: 10.1016/S0921-5107(98)00110-X
  • Kuhn KJ, Murthy A, Kotlyar R, Kuhn M. Past, present and future: SiGe and CMOS transistor scaling. ECS Trans. 2010;33:3–17. doi: 10.1149/1.3487530
  • Quinones EJ, John S, Ray SK, Banerjee SK. Design, fabrication, and analysis of SiGeC heterojunction PMOSFETs. IEEE Trans Electron Devices. 2000;47:1715–1725. doi: 10.1109/16.861582
  • Schubert MF, Rana F. SiGeC/Si electrooptic modulators. J Lightwave Technol. 2007;25:866–874. doi: 10.1109/JLT.2006.890432
  • Feng R, Kremer F, Sprouster DJ, et al. Structural and electrical properties of In-implanted Ge. J Appl Phys. 2015;118:165701. doi: 10.1063/1.4934200
  • Ziegler JF and Manoyan JM. The stopping of ions in compounds. Nucl Instrum Methods Phys Res Sec B. 1998;35:215–228. doi: 10.1016/0168-583X(88)90273-X
  • de Mey G. Field calculations in Hall samples. Solid-State Electron. 1973;16:955–957. doi: 10.1016/0038-1101(73)90105-6
  • Newville M. IFEFFIT : interactive XAFS analysis and FEFF fitting. J Synchrotron Rad. 2001;8:322–324. doi: 10.1107/S0909049500016964
  • Rehr JJ, Kas JJ, Vila FD, Prange MP, Jorissen K. Parameter-free calculations of X-ray spectra with FEFF9. Phys Chem Chem Phys. 2010;12:5503–5513. doi: 10.1039/b926434e
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169
  • Decoster S, Johannessen B, Glover CJ, et al. Direct observation of substitutional Ga after ion implantation in Ge by means of extended x-ray absorption fine structure. Appl Phys Lett. 2012;101:261904. doi: 10.1063/1.4773185