2,925
Views
37
CrossRef citations to date
0
Altmetric
Original Report

Novel thermomechanical processing methods for achieving ultragrain refinement of low-carbon steel without heavy plastic deformation

, , , , &
Pages 61-68 | Received 08 Jun 2016, Published online: 25 Jul 2016

References

  • Ueji R, Tsuji N, Minamino Y, Koizumi Y. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Mater. 2002;50:4177–4189. doi: 10.1016/S1359-6454(02)00260-4
  • Tsuji N, Matsubara Y, Saito Y. Dynamic recrystallization of ferrite in interstitial free steel. Scripta Mater. 1997;37:477–484. doi: 10.1016/S1359-6462(97)00123-1
  • Baczynski J, Jonas JJ. Torsion textures produced by dynamic recrystallization in α-iron and two interstitial-free steels. Metall Mater Trans A. 1998;29:447–462. doi: 10.1007/s11661-998-0125-y
  • Song R, Ponge D, Raabe D, Kaspar R. Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Mater. 2005;53:845–858. doi: 10.1016/j.actamat.2004.10.051
  • Hodgson PD, Hickson MR, Gibbs RK. Ultrafine ferrite in low carbon steel. Scripta Mater. 1999;40:1179–1184. doi: 10.1016/S1359-6462(98)00411-4
  • Mazaheri Y, Kermanpur A, Najafizadeh A, Saeidi N. Effects of initial microstructure and thermomechanical processing parameters on microstructures and mechanical properties of ultrafine grained dual phase steels. Mater Sci Eng A. 2014;612:54–62. doi: 10.1016/j.msea.2014.06.031
  • Dhua SK, Sarkar PP. Development of ultrafine grains in C–Mn steel plates through hot-rolling and air-cooling. Mater Sci Eng A. 2013;575:177–188. doi: 10.1016/j.msea.2013.03.052
  • Sabooni S, Karimzadeh F, Enayati MH, Ngan AHW. Friction-stir welding of ultrafine grained austenitic 304L stainless steel produced by martensitic thermomechanical processing. Mater Design. 2015;76:130–140. doi: 10.1016/j.matdes.2015.03.052
  • Matsumura Y, Yada H. Evolution of ultrafine-grained ferrite in hot deformation. Trans ISIJ. 1987;27:492–498. doi: 10.2355/isijinternational1966.27.492
  • Hurley PJ, Hodgson PD, Muddle BC. Analysis and characterisation of ultra-fine ferrite produced during a new steel strip rolling process. Scripta Mater. 1999;40:433–438. doi: 10.1016/S1359-6462(98)00442-4
  • Hurley PJ, Hodgson PD. Formation of ultra-fine ferrite in hot rolled strip: potential mechanisms for grain refinement. Mater Sci Eng A. 2001;302:206–214. doi: 10.1016/S0921-5093(00)01823-2
  • Hu J, Du LX, Xie H, Yu P, Misra RDK. A nanograined/ ultrafine-grained low-carbon microalloyed steel proce- ssed by warm rolling. Mater Sci Eng A. 2014;605:186–191. doi: 10.1016/j.msea.2014.03.064
  • Beladi H, Kelly GL, Shokouhi A, Hodgson PD. Effect of thermomechanical parameters on the critical strain for ultrafine ferrite formation through hot torsion testing. Mater Sci Eng A. 2004;367:152–161. doi: 10.1016/j.msea.2003.09.095
  • Pandi R, Yue S. Dynamic transformation of austenite to ferrite in low carbon steel. ISIJ Int. 1994;34:270–279. doi: 10.2355/isijinternational.34.270
  • Eghbali B. Study on the ferrite grain refinement during intercritical deformation of a microalloyed steel. Mater Sci Eng A. 2010;527:3407–3410. doi: 10.1016/j.msea.2010.01.075
  • Park N, Shibata A, Terada D, Tsuji N. Flow stress analysis for determining the critical condition of dynamic ferrite transformation in 6Ni–0.1C steel. Acta Mater. 2013;61:163–173. doi: 10.1016/j.actamat.2012.09.043
  • Zhao L, Park N, Shibata A, Tsuji N. Microstructural evolution of ferrite grains during dynamic transformation in 10Ni-0.1C Steel. TMS 2014 Annual Supplemental Proceedings. 919–926, San Diego.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Amsterdam: Elsevier; 2004.
  • Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. Grain size evolution during discontinuous dynamic recrystallization. Scripta Mater. 2014;72–73:1–4. doi: 10.1016/j.scriptamat.2013.09.020
  • Dehghan-manshadi A, Hodgson PD. Dependency of recrystallization mechanism to the initial grain size. Metall Mater Trans A. 2008;39A:2830–2840. doi: 10.1007/s11661-008-9656-5
  • Belyakov A, Tsuzaki K, Miura H, Sakai T. Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Mater. 2003;51:847–861. doi: 10.1016/S1359-6454(02)00476-7
  • Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003;51:2685–2699. doi: 10.1016/S1359-6454(03)00078-8
  • Sellars CM. From trial and error to computer modelling of thermomechanical processing. Ironmak Steelmak. 2011;38:250–257. doi: 10.1179/030192310X12706305605817
  • Murtya SVSN, Torizuka S, Nagai K, Kitai T, Kogo Y. Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scripta Mater. 2005;53:763–768. doi: 10.1016/j.scriptamat.2005.05.027
  • Miller RL. Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall Trans. 1972;3:905–911. doi: 10.1007/BF02647665
  • Furuhara T, Yamaguchi T, Furimoto S, Maki T. Formation of Ferrite+Cementite microduplex structure by warm deformation in high carbon steels. Mater Sci Forum. 2007;539–543:155–160. doi: 10.4028/www.scientific.net/MSF.539-543.155
  • Gao S, Chen MC, Chen S, Kamikawa N, Shibata A, Tsuji N. Yielding behavior and its effect on uniform elongation of fine grained IF steel. Mater Trans. 2014;55:73–77. doi: 10.2320/matertrans.MA201317
  • Tsuji N, Ito Y, Saito Y, Minamino Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater. 2002;47:893–899. doi: 10.1016/S1359-6462(02)00282-8
  • Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing. Acta Mater. 2005;53:4881–4892. doi: 10.1016/j.actamat.2005.07.009
  • Song R, Ponge D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Scripta Mater. 2005;52:1075–1080. doi: 10.1016/j.scriptamat.2005.02.016
  • Huang X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals. Science. 2006;312:249–251. doi: 10.1126/science.1124268