10,954
Views
147
CrossRef citations to date
0
Altmetric
Original Report

Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity

, , , , , & show all
Pages 110-116 | Received 26 Apr 2016, Accepted 03 Aug 2016, Published online: 01 Sep 2016

References

  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567
  • Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345(6201):1153–1158. doi: 10.1126/science.1254581
  • Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124–133. doi: 10.1016/j.actamat.2015.04.014
  • Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature; 2016. doi:10.1038/nature17981.
  • Couzinié J-Ph, Lilensten L, Champion Y, Dirras G, Perrière L, Guillot I. On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater Sci Eng A. 2015;645:255–263. doi: 10.1016/j.msea.2015.08.024
  • Wu YD, Cai YH, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater Lett. 2014;130:277–280. doi: 10.1016/j.matlet.2014.05.134
  • Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd. 2011;509(20):6043–6048. doi: 10.1016/j.jallcom.2011.02.171
  • Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698–706. doi: 10.1016/j.intermet.2011.01.004
  • Senkov ON, Scott JM, Senkova SV, Meisenkothen F, Miracle DB, Woodward CF. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J Mater Sci. 2012;47(9):4062–4074. doi: 10.1007/s10853-012-6260-2
  • He JY, Wang H, Huang HL, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016;102:187–196. doi: 10.1016/j.actamat.2015.08.076
  • Borkar T, Gwalani B, Choudhuri D, et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater. 2016;116:63–76. doi: 10.1016/j.actamat.2016.06.025
  • Chen S-T, Tang W-Y, Kuo Y-F, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater Sci Eng A. 2010;527(21–22):5818–5825. doi: 10.1016/j.msea.2010.05.052
  • Tsai M-H, Yuan H, Cheng G, et al. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics. 2013;33:81–86. doi: 10.1016/j.intermet.2012.09.022
  • Grässel O, Krüger L, Frommeyer G, Meyer LW. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast. 2000;16(10–11):1391–409. doi: 10.1016/S0749-6419(00)00015-2
  • Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 2006;55(5):477–480. doi: 10.1016/j.scriptamat.2006.04.022
  • Marteleur M, Sun F, Gloriant T, Vermaut P, Jacques PJ, Prima F. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scr Mater. 2012;66(10):749–752. doi: 10.1016/j.scriptamat.2012.01.049
  • Sun F, Zhang JY, Marteleur M, et al. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility. Scr Mater. 2015;94:17–20. doi: 10.1016/j.scriptamat.2014.09.005
  • Brozek C, Sun F, Vermaut P, et al. A β-titanium alloy with extra high strain-hardening rate: design and mechanical properties. Scr Mater. 2016;114:60–64. doi: 10.1016/j.scriptamat.2015.11.020
  • Yeh J-W. Recent progress in high-entropy alloys. Ann Chim—Sci Matér. 2006;31:633–648. doi: 10.3166/acsm.31.633-648
  • Lilensten L, Couzinié JP, Perrière L, Bourgon J, Emery N, Guillot I. New structure in refractory high-entropy alloys. Mater Lett. 2014;132:123–125. doi: 10.1016/j.matlet.2014.06.064
  • Rauch EF, Véron M, Portillo J, Bultreys D, Maniette Y, Nicolopoulos S. Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc Anal. 2008;22(6):S5–S8.
  • Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater Sci Eng A. 2016;654:30–38. doi: 10.1016/j.msea.2015.12.017
  • Laheurte P, Prima F, Eberhardt A, Gloriant T, Wary M, Patoor E. Mechanical properties of low modulus ββ titanium alloys designed from the electronic approach. J Mech Behav Biomed Mater. 2010;3(8):565–573. doi: 10.1016/j.jmbbm.2010.07.001
  • Bertrand E, Gloriant T, Gordin DM, et al. Synthesis and characterisation of a new superelastic Ti–25Ta–25Nb biomedical alloy. J Mech Behav Biomed Mater. 2010;3(8):559–564. doi: 10.1016/j.jmbbm.2010.06.007
  • Sun F, Zhang JY, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 2013;61(17):6406–6417. doi: 10.1016/j.actamat.2013.07.019
  • Castany P, Ramarolahy A, Prima F, Laheurte P, Curfs C, Gloriant T. In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloys. Acta Mater. 2015;88:102–111. doi: 10.1016/j.actamat.2015.01.014
  • Zwikker C. Physical properties of solid materials. London: Pergamon Press; 1954.
  • Banumathy S, Mandal RK, Singh AK. Structure of orthorhombic martensitic phase in binary Ti–Nb alloys. J Appl Phys. 2009;106(9): 093518-1–193518-6. doi: 10.1063/1.3255966
  • Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr Mater. 2008;58(6):484–487. doi: 10.1016/j.scriptamat.2007.10.050