1,733
Views
12
CrossRef citations to date
0
Altmetric
Original Report

Detecting co-deformation behavior of Cu–Au nanolayered composites

, , , &
Pages 20-28 | Received 28 Jun 2016, Published online: 03 Sep 2016

References

  • Koehler JS. Attempt to design a strong solid. Phys Rev B. 1970;2:547–551. doi: 10.1103/PhysRevB.2.547
  • Rao S, Hazzledine P, Dimiduk D. Interfacial strengthening in semi-coherent metallic multilayers. MRS proceedings; Cambridge Univ Press; 1994. p. 67.
  • Li YP, Zhu XF, Zhang GP, et al. Investigation of deformation instability of Au/Cu multilayers by indentation. Philos Mag. 2010;90:3049–3067. doi: 10.1080/14786431003776802
  • Li YP, Zhu XF, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation. J Mater Res. 2009;24:728–735. doi: 10.1557/jmr.2009.0092
  • Yan JW, Zhu XF, Zhang GP, et al. Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers. Thin Solid Films. 2013;527:227–231. doi: 10.1016/j.tsf.2012.11.052
  • Zhang JY, Zhang X, Liu G, et al. Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater Sci Eng A. 2011;528:2982–2987. doi: 10.1016/j.msea.2010.12.054
  • Mara NA, Li N, Misra A, et al. Interface-driven plasticity in metal–ceramic nanolayered composites: direct validation of multiscale deformation modeling via in situ indentation in TEM. JOM. 2016;68:143–150. doi: 10.1007/s11837-015-1542-1
  • Ashby M. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424. doi: 10.1080/14786437008238426
  • Utyashev FZ. Strain compatibility and nanostructuring of bulk metallic materials via severe plastic deformation. Mater Sci Forum: Trans Tech Publ; 2010. p. 45–9.
  • Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56:654–724. doi: 10.1016/j.pmatsci.2011.01.005
  • Arzt E. Overview no. 130—size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 1998;46:5611–26. doi: 10.1016/S1359-6454(98)00231-6
  • Misra A, Hirth JP, Hoagland RG. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005;53:4817–24. doi: 10.1016/j.actamat.2005.06.025
  • Wang F, Huang P, Xu M, et al. Shear banding deformation in Cu/Ta nano-multilayers. Mater Sci Eng A. 2011;528:7290–4. doi: 10.1016/j.msea.2011.06.019
  • Zhang GP, Liu Y, Wang W, et al. Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl Phys Lett. 2006;88:013105. doi: 10.1063/1.2159581
  • Li YP, Zhu XF, Tan J, et al. Two different types of shear-deformation behaviour in Au-Cu multilayers. Phil Mag Lett. 2009;89:66–74. doi: 10.1080/09500830802613147
  • Li N, Wang J, Misra A, et al. Direct observations of confined layer slip in Cu/Nb multilayers. Microsc Microanal. 2012;18:1155–1162. doi: 10.1017/S143192761200133X
  • Rzepiejewska-Malyska K, Parlinska-Wojtan M, Wasmer K, et al. In-situ SEM indentation studies of the deformation mechanisms in TiN, CrN and TiN/CrN. Micron. 2009;40:22–27. doi: 10.1016/j.micron.2008.02.013
  • Mara NA, Beyerlein IJ. Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J Mater Sci. 2014;49:6497–516. doi: 10.1007/s10853-014-8342-9
  • Zhang JY, Liu G, Sun J. Comparisons between homogeneous boundaries and heterophase interfaces in plastic deformation: nanostructured Cu micropillars vs. nanolayered Cu-based micropillars. Acta Mater. 2013;61:6868–6681. doi: 10.1016/j.actamat.2013.07.065
  • Knorr I, Cordero NM, Lilleodden ET, et al. Mechanical behavior of nanoscale Cu/PdSi multilayers. Acta Mater. 2013;61:4984–4995. doi: 10.1016/j.actamat.2013.04.047
  • Wang Z, Perepezko JH, Larson D, et al. Mixing behaviors in Cu/Ni and Ni/V multilayers induced by cold rolling. J Alloys Compd. 2015;643:S246–S249. doi: 10.1016/j.jallcom.2014.11.106
  • Anderson PM, Bingert JF, Misra A, et al. Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 2003;51:6059–75. doi: 10.1016/S1359-6454(03)00428-2
  • Ghosh SK, Limaye PK, Swain BP, et al. Tribological behaviour and residual stress of electrodeposited Ni/Cu multilayer films on stainless steel substrate. Surf Coat Technol. 2007;201:4609–4618. doi: 10.1016/j.surfcoat.2006.09.314
  • Luo ZP, Zhang GP, Schwaiger R. Microstructural vortex formation during cyclic sliding of Cu/Au multilayers. Scr Mater. 2015;107:67–70. doi: 10.1016/j.scriptamat.2015.05.022
  • Mara NA, Bhattacharyya D, Hirth JP, et al. Mechanism for shear banding in nanolayered composites. Appl Phys Lett. 2010;97:021909. doi: 10.1063/1.3458000
  • Li YP, Zhu XF, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation. J Mater Res. 2011;24:728–735. doi: 10.1557/jmr.2009.0092
  • Guo W, Jägle EA, Choi P-P, et al. Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates. Phys Rev Lett. 2014;113:035501. doi: 10.1103/PhysRevLett.113.035501
  • Misra A, Kung H, Hammon D, et al. Damage mechanisms in nanolayered metallic composites. Int J Damage Mech. 2003;12:365–376. doi: 10.1177/105678903036227
  • Zhu XF, Zhang GP, Yan C, et al. Scale-dependent fracture mode in Cu–Ni laminate composites. Philos Mag Lett. 2010;90:413–421. doi: 10.1080/09500831003745241
  • Mirkarimi P, Barnett S, Hubbard KM, et al. Structure and mechanical properties of epitaxial TiN/V0. 3Nb0. 7N (100) superlattices. J Mater Res. 1994;9:1456–1467. doi: 10.1557/JMR.1994.1456
  • Misra A, Zhang X, Hammon D, et al. Work hardening in rolled nanolayered metallic composites. Acta Mater. 2005;53:221–226. doi: 10.1016/j.actamat.2004.09.018
  • Rao SI, Hazzledine PM. Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system. Philo Mag A. 2000;80:2011–2040. doi: 10.1080/01418610008212148
  • Wang J, Misra A, Hoagland RG, et al. Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater. 2012;60:1503–1513. doi: 10.1016/j.actamat.2011.11.047
  • Yan JW, Zhang GP. Revealing the tunable twinning/ detwinning behavior in 25 nm Cu/Au multilayers. Appl Phys Lett. 2013;102:211905. doi: 10.1063/1.4808036
  • Meyers MA, Chawla KK. Mechanical behavior of materials. Cambridge: Cambridge University Press; 2009.
  • Hirth J, Lothe J. Thoery of dislocations. 2nd ed. New York: John Wiley; 1982.
  • Venables J. The electron microscopy of deformation twinning. J Phys Chem Solids. 1964;25:685–692. doi: 10.1016/0022-3697(64)90177-5
  • Anderson P, Foecke T, Hazzledine P. Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 1999;24:27–33. doi: 10.1557/S0883769400051514
  • Li YP, Zhang GP. On plasticity and fracture of nanostructured Cu/X (X=Au, Cr) multilayers: the effects of length scale and interface/boundary. Acta Mater. 2010;58:3877–3887. doi: 10.1016/j.actamat.2010.03.042
  • Yan JW, Zhu XF, Yang B, et al. Shear stress-driven refreshing capability of plastic deformation in nanolayered metals. Phys Rev Letts. 2013;110:155502. doi: 10.1103/PhysRevLett.110.155502