6,271
Views
81
CrossRef citations to date
0
Altmetric
Original Report

A strategy to improve the work-hardening behavior of Ti–6Al–4V parts produced by additive manufacturing

, , , , , , , & show all
Pages 201-208 | Received 27 Jul 2016, Published online: 24 Oct 2016

References

  • Lütjering G, Williams JC. Titanium. 2nd ed. Berlin, Germany: Springer; 2007.
  • Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications. Weinheim, Germany: Wiley-VCH; 2003.
  • Boyer R, Welsch G, Collings EW. Materials properties handbook: titanium alloys. Materials Park, OH: ASM International; 1994.
  • Al-Bermani SS, Blackmore ML, Zhang W, et al. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall Mater Trans A. 2010;41(13):3422–3434. doi: 10.1007/s11661-010-0397-x
  • Safdar A, Wei LY, Snis A, et al. Evaluation of microstructural development in electron beam melted Ti–6Al–4V. Mater Charact. 2012;65:8–15. doi: 10.1016/j.matchar.2011.12.008
  • Kobryn PA, Semiatin SL. Microstructure and texture evolution during solidification processing of Ti–6Al–4V. J Mater Process Technol. 2003;135(2):330–339. doi: 10.1016/S0924-0136(02)00865-8
  • Wu X, Liang J, Mei J, et al. Microstructures of laser-deposited Ti–6Al–4V. Mater Des. 2004;25(2):137–144. doi: 10.1016/j.matdes.2003.09.009
  • Qian L, Mei J, Liang J, et al. Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples. Mater Sci Technol. 2005;21(5):597–605. doi: 10.1179/174328405X21003
  • Antonysamy AA, Meyer J, Prangnell PB. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater Charact. 2013;84:153–168. doi: 10.1016/j.matchar.2013.07.012
  • de Formanoir C, Michotte S, Rigo O, et al. Electron beam melted Ti–6Al–4V: microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater Sci Eng A. 2016;652:105–119. doi: 10.1016/j.msea.2015.11.052
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58(9):3303–3312. doi: 10.1016/j.actamat.2010.02.004
  • Murr LE, Quinones SA, Gaytan SM, et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20–32. doi: 10.1016/j.jmbbm.2008.05.004
  • Vrancken B, Thijs L, Kruth JP, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compds. 2012;541:177–185. doi: 10.1016/j.jallcom.2012.07.022
  • Qiu C, Adkins NJE, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng: A. 2013;578:230–239. doi: 10.1016/j.msea.2013.04.099
  • Rafi HK, Karthik NV, Gong H, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform. 2013;22(12):3872–3883. doi: 10.1007/s11665-013-0658-0
  • Vilaro T, Colin C, Bartout JD. As-fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by selective laser melting. Metall Mater Trans A. 2011;42(10):3190–3199. doi: 10.1007/s11661-011-0731-y
  • Sun YY, Gulizia S, Oh CH, et al. The influence of as-built surface conditions on mechanical properties of Ti–6Al–4V additively manufactured by selective electron beam melting. JOM. 2016;68(3):791–798. doi: 10.1007/s11837-015-1768-y
  • Lu SL, Tang HP, Ning YP, et al. Microstructure and mechanical properties of long Ti–6Al–4V rods additively manufactured by selective electron beam melting out of a deep powder bed and the effect of subsequent hot isostatic pressing. Metall Mater Trans A. 2015;46:3824–3834. doi: 10.1007/s11661-015-2976-3
  • Castro R, Seraphin L. Contribution à l'étude métallographique et structurale de l'alliage de titane TA6V. Mém Sci Rev Mét. 1966;63(12):1025–1058.
  • Matsumoto H, Yoneda H, Sato K, et al. Room-temperature ductility of Ti–6Al–4V alloy with α′ martensite microstructure. Mater Sci Eng A. 2011;528:1512–1520. doi: 10.1016/j.msea.2010.10.070
  • Tan X, Kok Y, Toh WQ, et al. Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional printed Ti–6Al–4V. Sci Rep. 2016;6.
  • Sachdev A. Effect of retained austenite on the yielding and deformation behavior of a dual phase steel. Acta Metall. 1983;31(12):2037–2042. doi: 10.1016/0001-6160(83)90021-4
  • Gupta RR, Anil Kumar V, Mathew C, et al. Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working. Mater Sci Eng A. 2016;662:537–550. doi: 10.1016/j.msea.2016.03.094
  • Ashby MF. The deformation of plastically non- homogeneous materials. Philos Mag. 1970;21(170):399–424. doi: 10.1080/14786437008238426
  • Davenport AT, editor. Formable HSLA and dual-phase steels. Proceedings. Warrendale (PA): TMS-AIME; 1979.
  • Kot RA, Morris JW, editors. Structure and properties of dual-phase steels. Proceedings. Warrendale (PA): TMS-AIME; 1979.
  • Kot RA, Bramfitt BL, editors. Fundamentals of dual-phase steels. Proceedings. Warrendale (PA): TMS-AIME; 1981.
  • Tasan CC, Diehl M, Yan D, et al. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014;81:386–400. doi: 10.1016/j.actamat.2014.07.071
  • Tasan CC, Hoefnagels JPM, Diehl M, et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. Int J Plasticity. 2014;63:198–210. doi: 10.1016/j.ijplas.2014.06.004
  • Yan D, Tasan CC, Raabe D. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater. 2015;96:399–409. doi: 10.1016/j.actamat.2015.05.038
  • Zeng L, Bieler TR. Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti–6Al–4V wire. Mater Sci Eng A. 2005;392:403–414. doi: 10.1016/j.msea.2004.09.072
  • Rizk A, Bourell DL. Dislocation density contribution to strength of dual-phase steels. Scr Metall. 1982;16:1321–1324. doi: 10.1016/0036-9748(82)90419-7