3,774
Views
80
CrossRef citations to date
0
Altmetric
Original Report

Atomic structure and lattice defects in nanolaminated ternary transition metal borides

, , &
Pages 235-241 | Received 24 Aug 2016, Published online: 25 Oct 2016

References

  • Matkovich VI. Boron and refractory borides. Berlin: Springer Verlag; 1977.
  • Martini C, Palombarini G, Poli G, et al. Sliding and abrasive wear behaviour of boride coatings. Wear. 2004;256:608–613. doi: 10.1016/j.wear.2003.10.003
  • Okamoto NL, Kusakari M, Tanaka K, et al. Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2. Acta Mater. 2010;58:76–84. doi: 10.1016/j.actamat.2009.08.058
  • Panda KB, Chandran KSR. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 2006;54:1641–1657. doi: 10.1016/j.actamat.2005.12.003
  • Herbst JF, Fuerst CD, Mishira RK, et al. Coercivity enhancement of melt-spun Nd–Fe–B ribbons using low-level Cu additions. J Appl Phys. 1991;69:5823–5825. doi: 10.1063/1.347861
  • Yu XW, Licht S. A novel high capacity, environmentally benign energy storage system: super-iron boride battery. J Power Sources. 2008;179:407–411. doi: 10.1016/j.jpowsour.2007.12.060
  • Licht S, Yu XW, Qu DY. A novel alkaline redox couple: chemistry of the Fe6+/B2? Super-iron boride battery. Chem Commun. 2007;26:2753–2755. doi: 10.1039/b701629h
  • Zapata-Solvas E, Jayaseelan DD, Brown PM, et al. Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra-high temperature ceramics. J Eur Ceram Soc. 2013;33:3467–3472. doi: 10.1016/j.jeurceramsoc.2013.06.009
  • Opeka MM, Talmy IG, Wuchina EJ, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc. 1999;19:2405–2414. doi: 10.1016/S0955-2219(99)00129-6
  • Parthasarathy TA, Rapp RA, Opeka M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater. 2007;55:5999–6010. doi: 10.1016/j.actamat.2007.07.027
  • Campbell IE, Sherwood EM. High temperature materials and technology. 1st ed. Hoboken, NJ: Wiley; 1967. Ch. 13, p. 360–363.
  • Barsoum MW. The M(n+1)AXn phases: a new class of solid; thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:201–281. doi: 10.1016/S0079-6786(00)00006-6
  • Barsoum MW, El-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc. 1996;79:1953–1956. doi: 10.1111/j.1151-2916.1996.tb08018.x
  • Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011;41:195–227. doi: 10.1146/annurev-matsci-062910-100448
  • Barsoum MW, El-Raghy T, Ali M. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall Mater Trans A. 2000;31:1857–1865. doi: 10.1007/s11661-006-0243-3
  • Ade M, Hillebrecht H. Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg Chem. 2015;54:6122–6135. doi: 10.1021/acs.inorgchem.5b00049
  • Chai P, Stoian SA, Tan XT, et al. Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T = Fe, Mn, Cr) and AlFe2−xMnxB2. J Solid State Chem. 2015;224:52–61. doi: 10.1016/j.jssc.2014.04.027
  • Okada S, Iizumi K, Kudaka K, et al. Single crystal growth of (MoXCr1−X)AlB and (MoXW1−X)AlB by metal Al solutions and properties of the crystals. J Solid State Chem. 1997;133:36–43. doi: 10.1006/jssc.1997.7313
  • Jeitschko W. The crystal structure of Fe2AlB2. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1969;25:163–165. doi: 10.1107/S0567740869001944
  • Jung W, Petry K. Ternary borides of Ru with Al and Zn. Z Kristallogr. 1988;18:153–154.
  • Jeitschko W. Die Kristallstruktur von MoAlB. Monatsh Chem. 1966;97:1472–1476. doi: 10.1007/BF00902599
  • Okada S. Synthesis, crystal structure and characterizations of the ternary borides TMAlB (TM = Mo,W) with UBC type structure. Trans Kokushikan Univ Fac Eng. 1998;31:7–12.
  • Yu Y, Lundström T. Crystal-growth and structural investigation of the new quaternary compound Mo1−xCrxAlB with x = 0.39. J Alloys Compd. 1995;226:5–9. doi: 10.1016/0925-8388(95)01598-1
  • Hu C, Lai CC, Tao Q, et al. Chem Commun. 2015;51:6560–6563. doi: 10.1039/C5CC00980D
  • Krivanek OL, Dellby N, Lupini AR. Towards sub-angstrom electron beams. Ultramicroscopy. 1999;78:1–11. doi: 10.1016/S0304-3991(99)00013-3
  • Muller DA. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater. 2009;8:263–270. doi: 10.1038/nmat2380
  • Kota S, Zapata-Solvas E, Ly A, et al. Synthesis and characterization of an alumina forming nanolaminated boride:MoAlB. Sci Rep. 2016;6:26475–26483.
  • Rodriguez-Carvajal J. FULLPROF: a program for Rietveld refinement and pattern matching analysis. Powder diffraction, satellite meeting of the XV congress. Toulouse, France: IUCr; 1990.
  • Riley DP, Kisi EH, Hansen TC. Self-propagating high-temperature synthesis of Ti3SiC2: II. Kinetics of ultra-high-speed reactions from in situ neutron diffraction. J Amer Ceram Soc. 2008;91:3207–3210. doi: 10.1111/j.1551-2916.2008.02637.x