2,626
Views
44
CrossRef citations to date
0
Altmetric
Original Report

Enhanced fatigue property by suppressing surface cracking in a gradient nanostructured bearing steel

, &
Pages 258-266 | Received 15 Aug 2016, Published online: 16 Nov 2016

References

  • Schijve J. Fatigue of structures and materials. New York (NY): Springer; 2009.
  • Furuya Y, Matsuoka S. Improvement of gigacycle fatigue properties by modified ausforming in 1600 and 2000 MPa-class low-alloy steels. Metall Mater Trans. 2002;33:3421–3431. doi: 10.1007/s11661-002-0329-5
  • Zhao A, Xie J, Sun C, et al. Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue. 2012;38:46–56. doi: 10.1016/j.ijfatigue.2011.11.014
  • Li SX. Effects of inclusions on very high cycle fatigue properties of high strength steels. Int Mater Rev. 2012;57:92–114. doi: 10.1179/1743280411Y.0000000008
  • Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials – presentation of the concept behind a new approach. J Mater Sci Technol. 1999;15:193–201. doi: 10.1179/026708399101505707
  • Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng. 2004;375–377:38–45. doi: 10.1016/j.msea.2003.10.261
  • Tao NR, Wang ZB, Tong WP, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 2002;50:4603–4616. doi: 10.1016/S1359-6454(02)00310-5
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590. doi: 10.1126/science.1200177
  • Huang HW, Wang ZB, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015;87:150–160. doi: 10.1016/j.actamat.2014.12.057
  • Yang L, Tao NR, Lu K, et al. Enhanced fatigue resistance of Cu with a gradient nanograined surface layer. Scripta Mater. 2013;68:801–804. doi: 10.1016/j.scriptamat.2013.01.031
  • Villegas JC, Shaw LL, Dai K, et al. Enhanced fatigue resistance of a nickel-based Hastelloy induced by a surface nanocrystallization and hardening process. Phil Mag Lett. 2005;85:427–438. doi: 10.1080/09500830500311705
  • Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater. 2006;54:1949–1954. doi: 10.1016/j.scriptamat.2006.01.049
  • Peterson RE. Stress concentration factors. New York: John Wiley & Sons; 1974.
  • Lu LT, Shiozawa K, Jiang Y. Influence of deeply rolling process on ultra-long life fatigue behavior of high carbon-chromium bearing steel. Acta Metall Sin. 2006;42:515–520.
  • Shiozawa K, Lu L. Very high-cycle fatigue behaviour of shot-peened high-carbon–chromium bearing steel. Fatigue Fract Eng Mater Struct. 2002;25:813–822. doi: 10.1046/j.1460-2695.2002.00567.x
  • Shiozawa K, Murai M, Shimatani Y, et al. Transition of fatigue failure mode of Ni–Cr–Mo low-alloy steel in very high cycle regime. Int J Fatigue. 2010;32:541–550. doi: 10.1016/j.ijfatigue.2009.06.011
  • Shiozawa K, Hasegawa T, Kashiwagi Y, et al. Very high cycle fatigue properties of bearing steel under axial loading condition. Int J Fatigue. 2009;31:880–888. doi: 10.1016/j.ijfatigue.2008.11.001
  • Bhadeshia HKDH. Steels for bearings. Prog Mater Sci. 2012;57:268–435. doi: 10.1016/j.pmatsci.2011.06.002
  • Huang HW, Wang ZB, Yong XP, et al. Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment. Mater Sci Technol. 2013;29:1200–1205. doi: 10.1179/1743284712Y.0000000192
  • Guo YB, Liu GR. Mechanical properties of hardened AISI 52100 steel in hard machining processes. J Manuf Sci Eng. 2002;124:1–9. doi: 10.1115/1.1413775
  • Hosseini SB, Klement U, Yao Y, et al. Formation mechanisms of White layers induced by hard turning of AISI 52100 steel. Acta Mater. 2015;89:258–267. doi: 10.1016/j.actamat.2015.01.075
  • Wang LM, Wang ZB, Lu K. Grain size effects on the austenitization process in a nanostructured ferritic steel. Acta Mater. 2011;59:3710–3719. doi: 10.1016/j.actamat.2011.03.006
  • Zhou L, Liu G, Han Z, et al. Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scripta Mater. 2008;58:445–448. doi: 10.1016/j.scriptamat.2007.10.034
  • Li JG, Umemoto M, Todaka Y, et al. A microstructural investigation of the surface of a drilled hole in carbon steels. Acta Mater. 2007;55:1397–1406. doi: 10.1016/j.actamat.2006.09.043
  • Mitamura N, Hidaka H, Takaki S. Microstructural development in bearing steel during rolling contact fatigue. Mater Sci Forum. 2007;539–543:4255–4260. doi: 10.4028/www.scientific.net/MSF.539-543.4255
  • Zhou L, Liu G, Ma XL, et al. Strain-induced refinement in a steel with spheroidal cementite subjected to surface mechanical attrition treatment. Acta Mater. 2008;56:78–87. doi: 10.1016/j.actamat.2007.09.003
  • Stickels CA, Peters CR. Compressive strain-induced austenite transformation in 52100 steel. Metall Mater Trans. 1977;8:1193–1195. doi: 10.1007/BF02667406
  • Kong L, Lao Y, Xiong T, et al. Nanocrystalline surface layer on AISI 52100 steel induced by supersonic fine particles bombarding. J Therm Spray Technol. 2013;22:1007–1013. doi: 10.1007/s11666-013-9934-7
  • Sakai T, Sato Y, Oguma N. Characteristic S–N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct. 2002;25:765–773. doi: 10.1046/j.1460-2695.2002.00574.x
  • Li W, Sakai T, Li Q, et al. Effect of loading type on fatigue properties of high strength bearing steel in very high cycle regime. Mater Sci Eng. 2011;528:5044–5052. doi: 10.1016/j.msea.2011.03.020
  • Mughrabi H. Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int J Fatigue. 2006;28:1501–1508. doi: 10.1016/j.ijfatigue.2005.05.018
  • Tanaka K, Akiniwa Y. Fatigue crack propagation behaviour derived from S–N data in very high cycle regime. Fatigue Fract Eng Mater Struct. 2002;25:775–784. doi: 10.1046/j.1460-2695.2002.00547.x
  • Dalaei K, Karlsson B, Svensson L-E. Stability of shot peening induced residual stresses and their influence on fatigue lifetime. Mater Sci Eng. 2011;528:1008–1015. doi: 10.1016/j.msea.2010.09.050