3,179
Views
32
CrossRef citations to date
0
Altmetric
Original Report

Homogenization of plastic deformation in heterogeneous lamella structures

, &
Pages 251-257 | Received 07 Oct 2016, Published online: 14 Nov 2016

References

  • Wu X, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci. 2014;111:7197–7201. doi: 10.1073/pnas.1324069111
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci. 2015;112:14501–14505. doi: 10.1073/pnas.1517193112
  • Ma XL, Huang CX, Xu WZ, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr Mater. 2015;103:57–60. doi: 10.1016/j.scriptamat.2015.03.006
  • Liu XC, Zhang HW, Lu K. Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater. 2015;96:24–36. doi: 10.1016/j.actamat.2015.06.014
  • Liu XC, Zhang HW, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science. 2013;342:337–340. doi: 10.1126/science.1242578
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590. doi: 10.1126/science.1200177
  • Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 2010;58:1152–1211. doi: 10.1016/j.actamat.2009.10.058
  • Yuan R, Beyerlein IJ, Zhou C. Emergence of grain-size effects in nanocrystalline metals from statistical activation of discrete dislocation sources. Acta Mater. 2015;90:169–181. doi: 10.1016/j.actamat.2015.02.035
  • Yuan R, Beyerlein IJ, Zhou C. Statistical dislocation activation from grain boundaries and its role in the plastic anisotropy of nanotwinned copper. Acta Mater. 2016;110:8–18. doi: 10.1016/j.actamat.2016.02.064
  • Khan AS, Farrokh B, Takacs L. Compressive properties of Cu with different grain sizes: sub-micron to nanometer realm. J Mater Sci. 2008;43:3305–3313. doi: 10.1007/s10853-008-2508-2
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191. doi: 10.1080/21663831.2014.935821
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016:1–7.
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345:1455–1456. doi: 10.1126/science.1255940
  • Ardeljan M, Knezevic M, Nizolek T, et al. A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model. Int J Plasticity. 2015;74:35–57. doi: 10.1016/j.ijplas.2015.06.003
  • Witney AB, Sanders PG, Weertman JR, et al. Fatigue of nanocrystalline copper. Scripta Metall Mater. 1995;33:2025–2030. doi: 10.1016/0956-716X(95)00441-W
  • Wei Q, Jia D, Ramesh KT, Ma E. Evolution and microstructure of shear bands in nanostructured Fe. Appl Phy Lett. 2002;81:1240–1242. doi: 10.1063/1.1501158
  • Landis CM, Beyerlein IJ, McMeeking RM. Micromechanical simulation of the failure of fiber reinforced composites. J Mech Phys Solids. 2000;48:621–648. doi: 10.1016/S0022-5096(99)00051-4