5,928
Views
125
CrossRef citations to date
0
Altmetric
Original Report

Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy

, , , , , & show all
Pages 276-283 | Received 29 Aug 2016, Published online: 21 Nov 2016

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high entropy alloys design with multiple principle elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375377:213–218. doi: 10.1016/j.msea.2003.10.257
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Lu ZP, Wang H, Chen MW, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop. Intermetallics. 2015;66:67–76. doi: 10.1016/j.intermet.2015.06.021
  • Ye YF, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects. Mater Today. 2015;19:349–362. doi: 10.1016/j.mattod.2015.11.026
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10:534–538. doi: 10.1002/adem.200700240
  • Hemphill MA, Yuan T, Wang GY, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012;60:5723–5734. doi: 10.1016/j.actamat.2012.06.046
  • Tang Z, Yuan T, Tsai CW, et al. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 2015;99:247–258. doi: 10.1016/j.actamat.2015.07.004
  • Mohsen SF, Li DY, Zhang Y, et al. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM. 2015;67:2288–2295. doi: 10.1007/s11837-015-1563-9
  • Santodonato LJ, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun. 2015;6:5964. doi: 10.1038/ncomms6964
  • Zhang Y, Yang X, Liaw PK. Alloy design and properties optimization of high-entropy alloys. JOM. 2012;64:830–838. doi: 10.1007/s11837-012-0366-5
  • Gao MC, Yeh JW, Liaw PK, et al. High-entropy alloys: fundamentals and applications. Cham: Springer International; 2016.
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Youssef KM, Zaddach AJ, Niu CN, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett. 2015;3:95–99. doi: 10.1080/21663831.2014.985855
  • Lee CP, Chen YY, Hsu CY, et al. The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx. J Electrochem Soc. 2007;154(8):C424–C430. doi: 10.1149/1.2744133
  • Chuang MH, Tsai MH, Wang WR, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59:6308–6317. doi: 10.1016/j.actamat.2011.06.041
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloy. Intermetallics. 2010;18:1758–1765. doi: 10.1016/j.intermet.2010.05.014
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Senkov ON, Senkova SV, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis. Acta Mater. 2013;61:1545–1557. doi: 10.1016/j.actamat.2012.11.032
  • Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat Commun. 2015;6:8748. doi: 10.1038/ncomms9748
  • Koželj P, Vrtnik S, Jelen A, et al. Discovery of a superconducting high-entropy alloy. Phy Rev Lett. 2014;113:107001. doi: 10.1103/PhysRevLett.113.107001
  • Stepanov N, Tikhonovsky M, Yurchenko N, et al. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics. 2015;59:8–17. doi: 10.1016/j.intermet.2014.12.004
  • Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015;96:258–268. doi: 10.1016/j.actamat.2015.06.025
  • Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61:5743–5755. doi: 10.1016/j.actamat.2013.06.018
  • Zhang ZJ, Mao MM, Wang JW, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6:10143. doi: 10.1038/ncomms10143
  • Wu Z, Bei H. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy. Mater Sci Eng A. 2015;640:217–224. doi: 10.1016/j.msea.2015.05.097
  • Wu Z, Parish CM, Bei H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J Alloys Compd. 2015;647:815–822. doi: 10.1016/j.jallcom.2015.05.224
  • Komarasamy M, Kumar N, Tang Z, et al. Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1 CoCrFeNi high entropy alloy. Mater Res Lett. 2015;3:30–34. doi: 10.1080/21663831.2014.958586
  • Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124–133. doi: 10.1016/j.actamat.2015.04.014
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7
  • Zaddach AJ, Niu C, Koch CC, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM. 2013;65:1780–1789. doi: 10.1007/s11837-013-0771-4
  • Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr Mater. 2015;108:44–47. doi: 10.1016/j.scriptamat.2015.05.041
  • Gutierrez-Urrutia I, Raabe D. Grain size effect on strain hardening in twinning-induced plasticity steels. Scr Mater. 2012;66:992–996. doi: 10.1016/j.scriptamat.2012.01.037
  • Yu Q, Shan ZW, Li J, et al. Strong crystal size effect on deformation twinning. Nature. 2010;463:335–338. doi: 10.1038/nature08692
  • Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Mater Sci Eng A. 2010;527:3552–3560. doi: 10.1016/j.msea.2010.02.041
  • El-Danaf E, Kalidindi SR, Doherty RD. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall Mater Trans A. 1999;30:1223–1233. doi: 10.1007/s11661-999-0272-9
  • Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 2011;59:6449–6462. doi: 10.1016/j.actamat.2011.07.009
  • Zhang X, Wang H, Chen X H, et al. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl Phys Lett. 2006;88:173116. doi: 10.1063/1.2198482
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–610. doi: 10.1126/science.1167641
  • Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48:171–273. doi: 10.1016/S0079-6425(02)00003-8
  • Estrin Y, Necking H. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 1984;32:57–70.
  • Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening. Mater Sci Eng A. 2001;319-321:246–249. doi: 10.1016/S0921-5093(00)02019-0
  • Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr Mater. 2008;58:484–487. doi: 10.1016/j.scriptamat.2007.10.050
  • Mahajan S, Chin GY. Twin-slip, twin-twin and slip-twin interactions in Co–8 wt.% Fe alloy single crystals. Acta Metall. 1973;21:173–179.
  • Mahajan S, Chin GY. The interaction of twins with existing substructure and twins in cobalt-iron alloys. Acta Metall. 1974;22:1113–1119. doi: 10.1016/0001-6160(74)90066-2
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Shen YF, Lu L, Lu QH, et al. Tensile properties of copper with nano-scale twins. Scr Mater. 2005;52:989–994. doi: 10.1016/j.scriptamat.2005.01.033
  • Ueji R, Tsuchida N, Terada D, et al. Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr Mater. 2008;59:963–966. doi: 10.1016/j.scriptamat.2008.06.050