9,417
Views
78
CrossRef citations to date
0
Altmetric
Brief Overview

Holey graphene: a unique structural derivative of graphene

, , &
Pages 209-234 | Received 13 Oct 2016, Published online: 22 Jan 2017

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534. doi: 10.1126/science.1158877
  • Ferrari AC, Bonaccorso F, Fal’ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–4810. doi: 10.1039/C4NR01600A
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–3924. doi: 10.1002/adma.201001068
  • Zhu Y, James DK, Tour JM. New routes to graphene, graphene oxide and their related applications. Adv Mater. 2012;24:4924–4955. doi: 10.1002/adma.201202321
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene -based composite materials. Nature. 2006;442:282–286. doi: 10.1038/nature04969
  • Ren W, Cheng H-M. The global growth of graphene. Nat Nanotechnol. 2014;9:726–730. doi: 10.1038/nnano.2014.229
  • Li XS, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245
  • Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3:563–568. doi: 10.1038/nnano.2008.215
  • Scott A. Graphene’s global race to market. Chem Eng News. 2016;94:28–33.
  • Schmidt-Mende L, MacManus-Driscoll JL. Zno—nanostructures, defects, and devices. Mater Today. 2007;10:40–48. doi: 10.1016/S1369-7021(07)70078-0
  • Charlier JC. Defects in carbon nanotubes. Acc Chem Res. 2002;35:1063–1069. doi: 10.1021/ar010166k
  • Terrones H, Lv R, Terrones M, et al. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Rep Prog Phys. 2012;75:062501. doi: 10.1088/0034-4885/75/6/062501
  • Bai J, Zhong X, Jiang S, et al. Graphene nanomesh. Nat Nanotechnol. 2010;5:190–194. doi: 10.1038/nnano.2010.8
  • Kim M, Safron NS, Han E, et al. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 2010;10:1125–1131. doi: 10.1021/nl9032318
  • Han TH, Huang Y-K, Tan ATL, et al. Steam etched porous graphene oxide network for chemical sensing. J Am Chem Soc. 2011;133:15264–15267. doi: 10.1021/ja205693t
  • Zhao X, Hayner CM, Kung MC, et al. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv Energy Mater. 2011;1:1079–1084. doi: 10.1002/aenm.201100426
  • Han X, Funk MR, Shen F, et al. Scalable holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors. ACS Nano. 2014;8:8255–8265. doi: 10.1021/nn502635y
  • Xu Y, Lin Z, Zhong X, et al. Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun. 2014;5:4554.
  • Fischbein MD, Drndic M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett. 2008;93:113107. doi: 10.1063/1.2980518
  • Son YW, Cohen ML, Louie SG. Energy gaps in graphene nanoribbons. Phys Rev Lett. 2006;97:216803. doi: 10.1103/PhysRevLett.97.216803
  • Kosynkin DV, Higginbotham AL, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009;458:872–876. doi: 10.1038/nature07872
  • Song B, Schneider GF, Xu Q, et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 2011;11:2247–2250. doi: 10.1021/nl200369r
  • Standop S, Lehtinen O, Herbig C, et al. Ion impacts on graphene/Ir(111): interface channeling, vacancy funnels, and a nanomesh. Nano Lett. 2013;13:1948–1955. doi: 10.1021/nl304659n
  • Merchant CA, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores. Nano Lett. 2010;10:2915–2921. doi: 10.1021/nl101046t
  • Schneider GF, Kowalczyk SW, Calado VE, et al. DNA translocation through graphene nanopores. Nano Lett. 2010;10:3163–3167. doi: 10.1021/nl102069z
  • Traversi F, Raillon C, Benameur SM, et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat Nanotechnol. 2013;8:939–945. doi: 10.1038/nnano.2013.240
  • Yang J, Ma M, Li L, et al. Graphene nanomesh: new versatile materials. Nanoscale. 2014;6:13301–13313. doi: 10.1039/C4NR04584J
  • Zeng Z, Huang X, Yin Z, et al. Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. Adv Mater. 2012;24:4138–4142. doi: 10.1002/adma.201104281
  • Liu X, Liu N, Liu M, et al. Graphene nanomesh photodetector with effective charge tunnelling from quantum dots. Nanoscale. 2015;7:4242–4249. doi: 10.1039/C4NR06883A
  • Zhang Q, Wan X, Xing F, et al. Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013;6:478–484. doi: 10.1007/s12274-013-0325-7
  • Ding J, Du K, Wathuthanthri I, et al. Transfer patterning of large-area graphene nanomesh via holographic lithography and plasma etching. J Vac Sci Technol B. 2014;32:06FF01. doi: 10.1116/1.4895667
  • Kazemi A, He X, Alaie S, et al. Large-area semiconducting graphene nanomesh tailored by interferometric lithography. Sci Rep. 2015;5:11463. doi: 10.1038/srep11463
  • Liang X, Jung Y-S, Wu S, et al. Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 2010;10:2454–2460. doi: 10.1021/nl100750v
  • Lee W, Park S-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev. 2014;114:7487–7556. doi: 10.1021/cr500002z
  • Tada K, Kosugi N, Sakuramoto K, et al. Electron-spin-based phenomena arising from pore edges of graphene nanomeshes. J Supercond Nov Magn. 2013;26:1037–1043. doi: 10.1007/s10948-012-2093-0
  • Jung I, Jang HY, Park S. Direct growth of graphene nanomesh using a Au nano-network as a metal catalyst via chemical vapor deposition. Appl Phys Lett. 2013;103:023105. doi: 10.1063/1.4813318
  • Sinitskii A, Tour JM. Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. J Am Chem Soc. 2010;132:14730–14732. doi: 10.1021/ja105426h
  • Paul RK, Badhulika S, Saucedo NM, et al. Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal Chem. 2012;84:8171–8178. doi: 10.1021/ac3012895
  • Esfandiar A, Kybert NJ, Dattoli EN, et al. DNA-decorated graphene nanomesh for detection of chemical vapors. Appl Phys Lett. 2013;103:183110. doi: 10.1063/1.4827811
  • Mangadlao JD, de Leon ACC, Felipe MJL, et al. Electrochemical fabrication of graphene nanomesh via colloidal templating. Chem Commun. 2015;51:7629–7632. doi: 10.1039/C5CC01831E
  • Li C, Yang X, Ding S, et al. Field emission properties of triode-type graphene mesh emitter arrays. IEEE Electron Dev Lett. 2014;35:786–788. doi: 10.1109/LED.2014.2322605
  • Wang M, Fu L, Gan L, et al. CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep. 2013;3:1238.
  • Safron NS, Kim M, Gopalan P, et al. Barrier-guided growth of micro- and nano-structured graphene. Adv Mater. 2012;24:1041–1045. doi: 10.1002/adma.201104195
  • Ning G, Fan Z, Wang G, et al. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun. 2011;47:5976–5978. doi: 10.1039/c1cc11159k
  • Patel M, Feng W, Savaram K, et al. Microwave enabled one-pot, one-step fabrication and nitrogen doping of holey graphene oxide for catalytic applications. Small. 2015;11:3358–3368. doi: 10.1002/smll.201403402
  • Fan Z, Zhao Q, Li T, et al. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon. 2012;50:1699–1703. doi: 10.1016/j.carbon.2011.12.016
  • Chen S, Duan J, Jaroniec M, et al. Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. J Mater Chem A. 2013;1:9409–9413. doi: 10.1039/c3ta00133d
  • Zhao X, Hayner CM, Kung MC, et al. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano. 2011;5:8739–8749. doi: 10.1021/nn202710s
  • Dikin DA, Stankovich S, Zimney EJ, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–460. doi: 10.1038/nature06016
  • Wang X, Jiao L, Sheng K, et al. Solution-processable graphene nanomeshes with controlled pore structures. Sci Rep. 2013;3:1996.
  • Xu Y, Chen C-Y, Zhao Z, et al. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 2015;15:4605–4610. doi: 10.1021/acs.nanolett.5b01212
  • Radich JG, Kamat PV. Making graphene holey. gold-nanoparticle-mediated hydroxyl radical attack on reduced graphene oxide. ACS Nano. 2013;7:5546–5557. doi: 10.1021/nn401794k
  • Kotchey GP, Allen BL, Vedala H, et al. The enzymatic oxidation of graphene oxide. ACS Nano. 2011;5:2098–2108. doi: 10.1021/nn103265h
  • Schniepp HC, Li J-L, McAllister MJ, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110:8535–8539. doi: 10.1021/jp060936f
  • Lin Y, Han X, Campbell CJ, et al. Holey graphene nanomanufacturing: structure, composition, and electrochemical properties. Adv Funct Mater. 2015;25:2920–2927. doi: 10.1002/adfm.201500321
  • Peng Y-Y, Liu Y-M, Chang J-K, et al. A facile approach to produce holey graphene and its application in supercapacitors. Carbon. 2015;81:347–356. doi: 10.1016/j.carbon.2014.09.067
  • Yang C-H, Huang P-L, Luo X-F, et al. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte. ChemSusChem. 2015;8:1779–1786. doi: 10.1002/cssc.201500030
  • Luo X-F, Yang C-H, Chang J-K. Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets. J Mater Chem A. 2015;3:17282–17289. doi: 10.1039/C5TA03687A
  • Xing Z, Tian J, Liu Q, et al. Holey graphene nanosheets: large-scale rapid preparation and their application toward highly-effective water cleaning. Nanoscale. 2014;6:11659–11663. doi: 10.1039/C4NR03104K
  • Koinuma M, Ogata C, Kamei Y, et al. Photochemical engineering of graphene oxide nanosheets. J Phys Chem C. 2012;116:19822–19827. doi: 10.1021/jp305403r
  • Shannon MA, Bohn PW, Elimelech M, et al. Science and technology for water purification in the coming decades. Nature. 2008;452:301–310. doi: 10.1038/nature06599
  • Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39:937–950. doi: 10.1016/S0008-6223(00)00183-4
  • Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332:1537–1541. doi: 10.1126/science.1200770
  • Zhang LL, Zhao X, Stoller MD, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 2012;12:1806–1812. doi: 10.1021/nl203903z
  • Kim TY, Jung G, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano. 2013;7:6899–6905. doi: 10.1021/nn402077v
  • Jiang Z, Pei B, Manthiram A. Randomly stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance. J Mater Chem A. 2013;1:7775–7781. doi: 10.1039/c3ta10457e
  • Jiang Z-j, Jiang Z, Chen W. The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction. J Power Sources. 2014;251:55–65. doi: 10.1016/j.jpowsour.2013.11.031
  • Jiang Z, Jiang Z-j, Tian X, et al. Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J Mater Chem A. 2014;2:441–450. doi: 10.1039/C3TA13832A
  • Jhajharia SK, Selvaraj K. Non-templated ambient nanoperforation of graphene: a novel scalable process and its exploitation for energy and environmental applications. Nanoscale. 2015;7:19705–19713. doi: 10.1039/C5NR05715A
  • Yin PT, Shah S, Chhowalla M, et al. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem Rev. 2015;115:2483–2531. doi: 10.1021/cr500537t
  • Lin Y, Watson KA, Kim J-W, et al. Bulk preparation of holey graphene via controlled catalytic oxidation. Nanoscale. 2013;5:7814–7824. doi: 10.1039/c3nr02135a
  • Baker RTK, Harris PS. Controlled atmosphere electron-microscopy studies of graphite gasification. I. Catalytic influence of zinc. Carbon. 1973;11:25–31. doi: 10.1016/0008-6223(73)90005-5
  • Harris PS, Feates FS, Reuben BG. Controlled atmosphere electron microscopy studies of graphite gasification. 4. Catalysis of graphite—O2 reaction by silver. Carbon. 1974;12:189–197. doi: 10.1016/0008-6223(74)90025-6
  • Severin N, Kirstein S, Sokolov IM, et al. Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett. 2009;9:457–461. doi: 10.1021/nl8034509
  • Gethers ML, Thomas JC, Jiang S, et al. Holey graphene as a weed barrier for molecules. ACS Nano. 2015;9:10909–10915. doi: 10.1021/acsnano.5b03936
  • Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano. 2010;4:4174–4180. doi: 10.1021/nn1007429
  • Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small. 2013;9:3593–3601. doi: 10.1002/smll.201203106
  • Liu J, Cai H, Yu X, et al. Fabrication of graphene nanomesh and improved chemical enhancement for Raman spectroscopy. J Phys Chem C. 2012;116:15741–15746. doi: 10.1021/jp303265d
  • Datta SS, Strachan DR, Khamis SM, et al. Crystallographic etching of few-layer graphene. Nano Lett. 2008;8:1912–1915. doi: 10.1021/nl080583r
  • Ci L, Xu Z, Wang L, et al. Controlled nanocutting of graphene. Nano Res. 2008;1:116–122. doi: 10.1007/s12274-008-8020-9
  • Booth TJ, Pizzocchero F, Anderson H, et al. Discrete dynamics of nanoparticle channelling in suspended graphene. Nano Lett. 2011;11:2689–2692. doi: 10.1021/nl200928k
  • Lv X, Lv W, Wei W, et al. A hybrid of holey graphene and Mn3O4 and its oxygen reduction reaction performance. Chem Commun. 2015;51:3911–3914. doi: 10.1039/C4CC09930C
  • Zhao Y, Hu C, Song L, et al. Functional graphene nanomesh foam. Energy Environ Sci. 2014;7:1913–1918. doi: 10.1039/c4ee00106k
  • Palaniselvam T, Aiyappa HB, Kurungot S. An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites. J Mater Chem. 2012;22:23799–23805. doi: 10.1039/c2jm35128e
  • Wang H, Zhi L, Liu K, et al. Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Adv Funct Mater. 2015;25:5420–5427. doi: 10.1002/adfm.201502025
  • Jiang L, Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale. 2014;6:1922–1945. doi: 10.1039/C3NR04555B
  • Han S, Wu D, Li S, et al. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater. 2014;26:849–864. doi: 10.1002/adma.201303115
  • Jiang L, Sheng L, Long C, et al. Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy. 2015;11:471–480. doi: 10.1016/j.nanoen.2014.11.007
  • Murali S, Quarles N, Zhang LL, et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy. 2013;2:764–768. doi: 10.1016/j.nanoen.2013.01.007
  • Tsai W-Y, Lin R, Murali S, et al. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80°C. Nano Energy. 2013;2:403–411. doi: 10.1016/j.nanoen.2012.11.006
  • http://batteryuniversity.com/learn/article/what_is_the_c_ratehttp://batteryuniversity.com/learn/article/what_is_the_c_rate
  • Dai L, Xue Y, Qu L, et al. Metal-free catalyst for oxygen reduction reaction. Chem Rev. 2015;115:4823–4892. doi: 10.1021/cr5003563
  • Shui J, Wang M, Du F, et al. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv. 2015;1:e1400129. doi: 10.1126/sciadv.1400129
  • Xu J, Lin Y, Connell JW, et al. Nitrogen-doped holey graphene as an anode for lithium-ion batteries with high volumetric energy density and long cycle life. Small. 2015;11:6179–6185. doi: 10.1002/smll.201501848
  • Yu D, Wei L, Jiang W, et al. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale. 2013;5:3457–3464. doi: 10.1039/c3nr34267k
  • Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol. 2015;10:444–452. doi: 10.1038/nnano.2015.48
  • Sun J, Wang L, Song R, et al. Nitrogen-doped holey graphene foams for high-performance lithium storage. RSC Adv. 2015;5:91114–91119. doi: 10.1039/C5RA19313C
  • Wang X, Lv L, Cheng Z, et al. High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries. Adv Energy Mater. 2016;6:1502100. doi: 10.1002/aenm.201502100
  • Jiang Z-J, Jiang Z. Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries. ACS Appl Mater Interfaces. 2014;6:19082–19091. doi: 10.1021/am5050604
  • Ji J, Liu J, Lai L, et al. In situ activation of nitrogen-doped graphene anchored on graphite foam for a high-capacity anode. ACS Nano. 2015;9:8609–8616. doi: 10.1021/acsnano.5b03888
  • Koenig SP, Wang L, Pellegrino J, et al. Selective molecular sieving through porous graphene. Nat Nanotechnol. 2012;7:728–732. doi: 10.1038/nnano.2012.162
  • Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett. 2012;12:3602–3608. doi: 10.1021/nl3012853
  • O’Hern SC, Jang D, Bose S, et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 2015;15:3254–3260. doi: 10.1021/acs.nanolett.5b00456
  • Surwade SP, Smirnov SN, Vlassiouk IV, et al. Water desalination using nanoporous single-layer graphene. Nat Nanotechnol. 2015;10:459–464. doi: 10.1038/nnano.2015.37
  • Heerema SJ, Dekker C. Graphene nanodevices for DNA sequencing. Nat Nanotechnol. 2016;11:127–136. doi: 10.1038/nnano.2015.307
  • Wells DB, Belkin M, Comer J, et al. Assessing graphene nanopores for sequencing DNA. Nano Lett. 2012;12:4117–4123. doi: 10.1021/nl301655d
  • Paulechka E, Wassenaar TA, Kroenlein K, et al. Nucleobase-functionalized graphene nanoribbons for accurate high-speed sequencing. Nanoscale. 2016;8:1861–1867. doi: 10.1039/C5NR07061A
  • Sun C, Wen B, Bai B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull. 2015;60:1807–1823. doi: 10.1007/s11434-015-0914-9
  • Jiang Z, Shi Y, Jiang Z-J, et al. High performance of a free-standing sulfonic acid functionalized holey graphene oxide paper as a proton conducting polymer electrolyte for air-breathing direct methanol fuel cells. J Mater Chem A. 2014;2:6494–6503. doi: 10.1039/c4ta00208c
  • Sint K, Wang B, Krai P. Selective ion passage through functionalized graphene nanopores. J Am Chem Soc. 2008;130:16448–16449. doi: 10.1021/ja804409f
  • Carpenter C, Christmann AM, Hu L, et al. Elastic properties of graphene nanomeshes. Appl Phys Lett. 2014;104:141911. doi: 10.1063/1.4871304
  • Hu L, Wyant S, Muniz AR, et al. Mechanical behavior and fracture of graphene nanomeshes. J Appl Phys. 2015;117:024302. doi: 10.1063/1.4905583
  • Zhu S, Huang Y, Li T. Extremely compliant and highly stretchable patterned graphene. Appl Phys Lett. 2014;104:173103. doi: 10.1063/1.4874337
  • Liao Y, Tu K, Han X, et al. Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes. Sci Rep. 2015;5:14510. doi: 10.1038/srep14510
  • Ionescu R, George A, Ruiz I, et al. Oxygen etching of thick MoS2 films. Chem Commun. 2014;50:11226–11229. doi: 10.1039/C4CC03911D