7,338
Views
159
CrossRef citations to date
0
Altmetric
Original Report

Stability and strength of atomically thin borophene from first principles calculations

, ORCID Icon, , , , , , & show all
Pages 399-407 | Received 04 Sep 2016, Published online: 19 Mar 2017

References

  • Zhang Y, Tan YW, Stormer HL, et al. Experimental observation of the quantum hall effect and Berry's phase in graphene. Nature. 2005;438(7065):201–204. doi: 10.1038/nature04235
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–907. doi: 10.1021/nl0731872
  • Geim AK. Graphene. Status and prospects. Science. 2009;324(5934):1530–1534. doi: 10.1126/science.1158877
  • Liu CC, Feng W, Yao Y. Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett. 2011;107:076802–076805. doi: 10.1103/PhysRevLett.107.076802
  • Novoselov KS, Fal'ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490(7419):192–200. doi: 10.1038/nature11458
  • Xu Y, Yan B, Zhang HJ, et al. Large-gap quantum spin hall insulators in thin films. Phys Rev Lett. 2013;111:136804–136808. doi: 10.1103/PhysRevLett.111.136804
  • Xu Y, Gan Z, Zhang SC. Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. Phys Rev Lett. 2014;112:226801–226805. doi: 10.1103/PhysRevLett.112.226801
  • Issi JP, Araujo PT, Dresselhaus MS. Electron and phonon transport in graphene in and out of the bulk. In: Physics of graphene. New York (NY): Springer; 2014. p. 65–112.
  • Luican-Mayer A, Andrei EY. Probing Dirac fermions in graphene by scanning tunneling microscopy and spectroscopy. In: Physics of graphene. New York (NY): Springer; 2014. p. 29–63.
  • Dávila ME, Xian L, Cahangirov S, et al. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys. 2014;16(9):095002–095011. doi: 10.1088/1367-2630/16/9/095002
  • Ferrari AC, Bonaccorso F, Fal'Ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015;7:4598–4810. doi: 10.1039/C4NR01600A
  • Peng B, Zhang H, Shao H, et al. Low lattice thermal conductivity of stanene. Sci Rep. 2016;6:20225–20234. doi: 10.1038/srep20225
  • Peng B, Zhang H, Shao H, et al. Thermal conductivity of monolayer mos, mose, and ws: interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv. 2016;6:5767–5773. doi: 10.1039/C5RA19747C
  • Peng B, Zhang H, Shao H, et al. Towards intrinsic phonon transport in single-layer mos. Annalen der Physik. 2016;528(6):504–511. doi: 10.1002/andp.201500354
  • Piazza ZA, Hu HS, Li WL, et al. Planar hexagonal b36 as a potential basis for extended single-atom layer boron sheets. Nat Commun. 2014;5:3113–3118. doi: 10.1038/ncomms4113
  • Mannix AJ, Zhou XF, Kiraly B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science. 2015;350(6267):1513–1516. doi: 10.1126/science.aad1080
  • Feng B, Zhang J, Zhong Q, et al. Experimental realization of two-dimensional boron sheets. Nat Chem. 2016; advance online publication.
  • Boustani I. Systematic ab initio investigation of bare boron clusters:m determination of the geometry and electronic structures of (n=2˘14). Phys Rev B. 1997;55:16426–16438. doi: 10.1103/PhysRevB.55.16426
  • Zhai HJ, Alexandrova AN, Birch KA, et al. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed. 2003;42(48):6004–6008. doi: 10.1002/anie.200351874
  • Zhai HJ, Kiran B, Li J, et al. Hydrocarbon analogues of boron clusters-planarity, aromaticity and antiaromaticity. Nat Mater. 2003;2(12):827–833. doi: 10.1038/nmat1012
  • Tang H, Ismail-Beigi S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett. 2007;99:115501–115504. doi: 10.1103/PhysRevLett.99.115501
  • Lau KC, Pandey R. Stability and electronic properties of atomistically-engineered 2d boron sheets. J Phys Chem C. 2007;111(7):2906–2912. doi: 10.1021/jp066719w
  • Yang X, Ding Y, Ni J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B. 2008;77:041402–041405. doi: 10.1103/PhysRevB.77.041402
  • Penev ES, Bhowmick S, Sadrzadeh A, et al. Polymorphism of two-dimensional boron. Nano Lett. 2012;12(5):2441–2445. doi: 10.1021/nl3004754
  • Liu H, Gao J, Zhao J. From boron cluster to two-dimensional boron sheet on cu(111) surface: growth mechanism and hole formation. Sci Rep. 2013;3:3238–3246.
  • Liu Y, Penev ES, Yakobson BI. Probing the synthesis of two-dimensional boron by first-principles computations. Angew Chem Int Ed. 2013;52(11):3156–3159. doi: 10.1002/anie.201207972
  • Zhou XF, Dong X, Oganov AR, et al. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys Rev Lett. 2014;112:085502–085506. doi: 10.1103/PhysRevLett.112.085502
  • Zhai HJ, Zhao YF, Li WL, et al. Observation of an all-boron fullerene. Nat Chem. 2014;6(8):727–731.
  • Li XB, Xie SY, Zheng H, et al. Boron based two-dimensional crystals: theoretical design, realization proposal and applications. Nanoscale. 2015;7:18863–18871. doi: 10.1039/C5NR04359J
  • Yuan J, Zhang LW, Liew KM. Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons. RSC Adv. 2015;5:74399–74407. doi: 10.1039/C5RA14939H
  • Zhang Z, Yang Y, Gao G, et al. Two-dimensional boron monolayers mediated by metal substrates. Angew Chem Int Ed. 2015;54(44):13022–13026. doi: 10.1002/anie.201505425
  • Wang LS. Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int Rev Phys Chem. 2016;35(1):69–142. doi: 10.1080/0144235X.2016.1147816
  • Zhou XF, Oganov AR, Wang Z, et al. Two-dimensional magnetic boron. Phys Rev B. 2016;93:085406–085411. doi: 10.1103/PhysRevB.93.085406
  • Carrete J, Li W, Lindsay L, et al. Physically founded phonon dispersions of few-layer materials and the case of borophene. Mater Res Lett. 2016;4(4):204–211. doi: 10.1080/21663831.2016.1174163
  • Wang H, Li Q, Gao Y, et al. Strain effects on borophene: ideal strength, negative Poisson ratio and phonon instability. New J Phys. 2016;18(7):073016–073022. doi: 10.1088/1367-2630/18/7/073016
  • Pang Z, Qian X, Yang R, et al. Super-stretchable borophene and its stability under straining. arXiv:. 2016;1602:05370–05380.
  • Peng B, Zhang H, Shao H, et al. Electronic, optical, and thermodynamic properties of borophene from first-principle calculations. J Mater Chem C. 2016;4:3592–3598. doi: 10.1039/C6TC00115G
  • Xu S, Zhao Y, Liao J, et al. The nucleation and growth of borophene on the Ag (111) surface. Nano Res. 2016;9:2616–2622. doi: 10.1007/s12274-016-1148-0
  • Yu X, Li L, Xu XW, et al. Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J Phys Chem C. 2012;116:20075–20079. doi: 10.1021/jp305545z
  • Lu H, Mu Y, Bai H, et al. Binary nature of monolayer boron sheets from ab initio global searches. J Chem Phys. 2013;138:024701–024704. doi: 10.1063/1.4774082
  • Wu X, Dai J, Zhao Y, et al. Two-dimensional boron monolayer sheets. ACS Nano. 2012;6(8):7443–7453. doi: 10.1021/nn302696v
  • Meng F, Chen X, He J. Electronic and magnetic properties of borophene nanoribbons. arXiv:. 2016;1601:05338–05370.
  • Feng B, Zhang J, Liu RY, et al. Direct evidence of metallic bands in a monolayer boron sheet. Phys Rev B. 2016;94:041408–041412. doi: 10.1103/PhysRevB.94.041408
  • Gao M, Li QZ, Yan XW, et al. Prediction of phonon-mediated superconductivity in borophene. arXiv:. 2016;1602:02930.
  • Liu Y, Dong YJ, Tang Z, et al. Stable and metallic borophene nanoribbons from first-principles calculations. J Mater Chem C. 2016;4:6380–6385. doi: 10.1039/C6TC01328G
  • Bullett DW. Structure and bonding in crystalline boron and bc. J Phys C: Solid State Phys. 1982;15(3):415–427. doi: 10.1088/0022-3719/15/3/008
  • Jemmis ED, Balakrishnarajan MM, Pancharatna PD. A unifying electron-counting rule for macropolyhedral boranes, metallaboranes, and metallocenes. J Am Chem Soc. 2001;123(18):4313–4323. doi: 10.1021/ja003233z
  • Jemmis ED, Balakrishnarajan MM. Polyhedral boranes and elemental boron: direct structural relations and diverse electronic requirements. J Am Chem Soc. 2001;123(18):4324–4330. doi: 10.1021/ja0026962
  • Imai Y, Mukaida M, Ueda M, et al. Band-calculation of the electronic densities of states and the total energies of boron-silicon system. J Alloys Compd. 2002;347:244–251. doi: 10.1016/S0925-8388(02)00764-8
  • Prasad DLVK, Balakrishnarajan MM, Jemmis ED. Electronic structure and bonding of -rhombohedral boron using cluster fragment approach. Phys Rev B. 2005;72:195102–195107. doi: 10.1103/PhysRevB.72.195102
  • Ogitsu T, Schwegler E, Galli G. β-rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem Rev. 2013;113:3425–3449. doi: 10.1021/cr300356t
  • Solozhenko VL, Kurakevych OO. Equilibrium p-t phase diagram of boron: experimental study and thermodynamic analysis. Sci Rep. 2013;3:2351–2358. doi: 10.1038/srep02351
  • Zhang RF, Legut D, Lin ZJ, et al. Stability and strength of transition-metal tetraborides and triborides. Phys Rev Lett. 2012;108:255502–255506. doi: 10.1103/PhysRevLett.108.255502
  • Zhou L, Körmann F, Holec D, et al. Structural stability and thermodynamics of CRN magnetic phases from ab initio calculations and experiment. Phys Rev B. 2014;90:184102–184113. doi: 10.1103/PhysRevB.90.184102
  • van Setten MJ, Uijttewaal MA, deijs GA, et al. Thermodynamic stability of boron: the role of defects and zero point motion. J Am Chem Soc. 2007;129(9):2458–2465. doi: 10.1021/ja0631246
  • Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon Press; 1954.
  • Wu Zj, Zhao Ej, Xiang Hp, et al. Crystal structures and elastic properties of superhard and from first principles. Phys Rev B. 2007;76:054115–054129. doi: 10.1103/PhysRevB.76.054115
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Baroni S, de Gironcoli S, Dal Corso A, et al. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys. 2001;73:515–562. doi: 10.1103/RevModPhys.73.515
  • Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and cacl-type sio at high pressures. Phys Rev B. 2008;78:134106–134114. doi: 10.1103/PhysRevB.78.134106
  • Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021
  • Le Page Y, Saxe P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys Rev B. 2002;65:104104–104117. doi: 10.1103/PhysRevB.65.104104
  • Wu X, Vanderbilt D, Hamann DR. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys Rev B. 2005;72:035105–035117. doi: 10.1103/PhysRevB.72.035105
  • Penev ES, Kutana A, Yakobson BI. Can two-dimensional boron superconduct? Nano Lett. 2016;16(4):2522–2526. doi: 10.1021/acs.nanolett.6b00070
  • Masago A, Shirai K, Katayama-Yoshida H. Crystal stability of - and -boron. Phys Rev B. 2006;73:104102. doi: 10.1103/PhysRevB.73.104102
  • Pavone P, Baroni S, de Gironcoli S. α↔β phase transition in tin: a theoretical study based on density-functional perturbation theory. Phys Rev B. 1998;57:10421–10423. doi: 10.1103/PhysRevB.57.10421
  • Blonsky MN, Zhuang HL, Singh AK, et al. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano. 2015;9(10):9885–9891. doi: 10.1021/acsnano.5b03394
  • Andrew RC, Mapasha RE, Ukpong AM, et al. Mechanical properties of graphene and boronitrene. Phys Rev B. 2012;85:125428–125436. doi: 10.1103/PhysRevB.85.125428
  • Becke AD, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys. 1990;92(9):5397–5403. doi: 10.1063/1.458517
  • Savin A, Jepsen O, Flad J, et al. Electron localization in solid-state structures of the elements: the diamond structure. Angew Chem Int Ed Engl. 1992;31(2):187–188. doi: 10.1002/anie.199201871
  • Gatti C. Chemical bonding in crystals: new directions. Zeitschrift für Kristallographie. 2005;220:399–457.
  • Chen K, Kamran S. Bonding characteristics of tic and tin. Model Numer Simul Mater Sci. 2013;3(1):7–11.
  • Fu CL. Electronic, elastic, and fracture properties of trialuminide alloys: Al3sc and al3ti. J Mater Res. 1990;5:971–979. doi: 10.1557/JMR.1990.0971
  • Ravindran P, Asokamani R. Correlation between electronic structure, mechanical properties and phase stability in intermetallic compounds. Bull Mater Sci. 1997;20(4):613–622. doi: 10.1007/BF02744780
  • Kunstmann J, Quandt A. Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties. Phys Rev B. 2006;74:035413–035426. doi: 10.1103/PhysRevB.74.035413
  • Wang Z, Lu TY, Wang HQ, et al. High anisotropy of fully hydrogenated borophene. Phys Chem Chem Phys. 2016;18(46):31424–31430. doi: 10.1039/C6CP06164H
  • Mortazavi B, Rahaman O, Dianat A. Mechanical responses of borophene sheets: a first-principles study. Phys Chem Chem Phys. 2016;18(39):27405–27413. doi: 10.1039/C6CP03828J
  • Momeni K, Attariani H, LeSar RA. Structural transformation in monolayer materials: a 2d to 1d transformation. Phys Chem Chem Phys. 2016;18(29):19873–19879. doi: 10.1039/C6CP04007A
  • Diao J, Gall K, Dunn ML. Surface-stress-induced phase transformation in metal nanowires. Nat Mater. 2003;2(10):656–660. doi: 10.1038/nmat977
  • Duke CB. Surface structures of compound semiconductors. J Vac Sci Technol. 1977;14:870–877. doi: 10.1116/1.569319