1,539
Views
45
CrossRef citations to date
0
Altmetric
Original Report

Beam-contamination-induced compositional alteration and its neutron-atypical consequences in ion simulation of neutron-induced void swelling

, , , , &
Pages 478-485 | Received 20 Feb 2017, Published online: 16 May 2017

References

  • Garner FA. Radiation damage in austenitic steels. In: Konings RJM, editor. Comprehensive nuclear materials. Amsterdam (Belgium): Elsevier; 2012. p. 33–95.
  • Garner FA. Void swelling and irradiation creep in light water reactor (LWR) environments. In: Tipping PG, editor. Understanding and mitigating ageing in nuclear power plants. Cambridge (UK): Woodhouse Publishing; 2010. p. 308–356.
  • Garner FA, Toloczko MB, Sencer BH. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J Nucl Mater. 2000;276(1–3):123–142. doi: 10.1016/S0022-3115(99)00225-1
  • Sencer BH, Garner FA. Compositional and temperature dependence of void swelling in model Fe-Cr base alloys irradiated in EBR-II. J Nucl Mater. 2000;283–287:164–168. doi: 10.1016/S0022-3115(00)00338-X
  • International Atomic Energy Agency. Structural materials for liquid metal cooled fast reactor fuel assemblies-operational behaviour. IAEA Nuclear Energy Series No. NF-T-4.3. Vienna: IAEA; 2012.
  • Garner FA, Shao L, Toloczko MB, et al. Use of self-ion bombardment to study void swelling in advanced radiation-resistant alloys. Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors; 2015 August; Ontario, Canada.
  • Bryk V, Borodin O, Kalchenko A, et al. Ion issues on irradiation behavior of structural materials at high doses and gas concentrations. Proceedings of Accelerator Applications 2013; 2013 August 5–8; Bruges, Belgium.
  • Shao L, Wei CC, Gigax JG, et al. Effect of defect imbalance on void swelling distributions produced in pure iron by 3.5 MeV self-ions. J Nucl Mater. 2014;453(1–3):176–181. doi: 10.1016/j.jnucmat.2014.06.002
  • Gigax JG, Aydogan E, Chen T, et al. The influence of ion beam rastering on the swelling of self-ion irradiated pure iron at 450°C. J Nucl Mater. 2015;465:343–348. doi: 10.1016/j.jnucmat.2015.05.025
  • Garner FA. Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage. J Nucl Mater. 1983;117:177–197. doi: 10.1016/0022-3115(83)90023-5
  • Garner FA, Wire GL, Gilbert ER. Stress effects in ion-bombardment experiments. Proceedings of the Radiation Effects and Tritium Technology for Fusion Reactors; 1975 October 1–3; Gatlinburg, TN.
  • Pechenkin VA, Chernova AD, Garner FA. Modeling of local changes in composition of alloys along the projected range under heavy ion irradiation. Proceedings of Accelerator Applications 2013; 2013 August 5–8; Bruges, Belgium.
  • Vörtler K, Barnard L, Szlufarska I, et al. Simulated spatial and temporal dependence of chromium concentration in pure Fe and Fe-14%Cr under high dpa ion irradiation. J Nucl Mater. 2016;479:23–35. doi: 10.1016/j.jnucmat.2016.06.040
  • Wang J, Toloczko MB, Bailey N, et al. Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling. Nucl Instrum Methods Phys Res B. 2016;387:20–28. doi: 10.1016/j.nimb.2016.09.015
  • Toloczko MB, Garner FA, Eiholzer CR. Irradiation creep and swelling of the U.S. fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ∼400°C. J Nucl Mater. 1994;212–215:604–607. doi: 10.1016/0022-3115(94)90131-7
  • Toloczko MB, Garner FA. Irradiation creep and void swelling of two LMR heats of HT9 at ∼400°C and 165 dpa. J Nucl Mater. 1996;233–237:289–292. doi: 10.1016/S0022-3115(96)00413-8
  • Sencer BH, Kennedy JR, Cole JI, et al. Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443°C. J Nucl Mater. 2009;393:235–241. doi: 10.1016/j.jnucmat.2009.06.010
  • Gigax JG, Chen T, Kim H, et al. Radiation response of alloy T91 at damage levels up to 1000 peak dpa. J Nucl Mater. 2016;482:257–265. doi: 10.1016/j.jnucmat.2016.10.003
  • Ziegler JF, Ziegler MD, Biersack JP. SRIM – The stopping and range of ions in matter (2010). Nucl Instr Methods Phys Res B. 2010;268:1818–1823. doi: 10.1016/j.nimb.2010.02.091
  • Stoller R, Toloczko MB, Was GS, et al. On the use of SRIM for computing radiation damage exposure. Nucl Meth Phys Res B. 2013;310:75–80. doi: 10.1016/j.nimb.2013.05.008
  • Short M, Gaston DR, Jin M, et al. Modeling injected interstitial effects on void swelling in self-ion experiments. J Nucl Mater. 2016;471:200–207. doi: 10.1016/j.jnucmat.2015.10.002
  • Odette GR, Alinger MJ, Wirth BD. Recent developments in irradiation-resistant steels. Annu Rev Mat Res. 2008;38:471–503. doi: 10.1146/annurev.matsci.38.060407.130315
  • Chen T, Aydogan E, Gigax JG, et al. Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation. J Nucl Mater. 2015;467:42–49. doi: 10.1016/j.jnucmat.2015.09.016
  • Chen T, Gigax JG, Price L, et al. Temperature dependent dispersoid stability in ion-irradiated ferritic- martensitic dual-phase oxide-dispersion-strengthened alloy: coherent interfaces vs. incoherent interfaces. Acta Mater. 2016;116:29–42. doi: 10.1016/j.actamat.2016.05.042
  • Getto E, Sun K, Monterrosa AM, et al. Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels. J Nucl Mater. 2016;480:159–176. doi: 10.1016/j.jnucmat.2016.08.015
  • Wang X, Yan Q, Was GS, et al. Void swelling in ferritic-martensitic steels under high dose ion irradiation: exploring possible contributions to swelling resistance. Scr Mater. 2016;112:9–14. doi: 10.1016/j.scriptamat.2015.08.032