3,277
Views
28
CrossRef citations to date
0
Altmetric
Original Report

Dynamic nanoindentation testing: is there an influence on a material’s hardness?

ORCID Icon, ORCID Icon & ORCID Icon
Pages 486-493 | Received 14 Apr 2017, Published online: 01 Jun 2017

References

  • Mohs F. Versuch einer Elementar-Methode zur naturhistorischen Bestimmung und Erkennung der Foßilien. Wien: Camesina; 1812.
  • Pethica JB, Oliver WC. Mechanical properties of nanometre volumes of material: use of the elastic response of small area indentations. MRS Proc. 1988;130:13–23. doi: 10.1557/PROC-130-13
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564
  • Asif SAS, Wahl KJ, Colton RJ. Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev Sci Instrum. 1999;70:2408–2413. doi: 10.1063/1.1149769
  • Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002;48:11–36. doi: 10.1016/S1044-5803(02)00192-4
  • Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3
  • Maier V, Merle B, Göken M, et al. An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J Mater Res. 2013;28:1177–1188. doi: 10.1557/jmr.2013.39
  • Maier V, Leitner A, Pippan R, et al. Thermally activated deformation behavior of ufg-au: environmental issues during long-term and high-temperature nanoindentation testing. JOM. 2015;67:2934–2944. doi: 10.1007/s11837-015-1638-7
  • Asif SAS, Pethica JB. Nano scale creep and the role of defects. MRS Proc. 1996;436:201–206. doi: 10.1557/PROC-436-201
  • Hay J, Agee P, Herbert E. Continuous stiffness measurement during instrumented indentation testing. Exp Tech. 2010;34:86–94. doi: 10.1111/j.1747-1567.2010.00618.x
  • Cheng Y-T, Ni W, Cheng C-M. Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Phys Rev Lett. 2006;97:75506. doi: 10.1103/PhysRevLett.97.075506
  • Durst K, Franke O, Böhner A, et al. Indentation size effect in Ni-Fe solid solutions. Acta Mater. 2007;55:6825–6833. doi: 10.1016/j.actamat.2007.08.044
  • Cordill MJ, Moody NR, Gerberich WW. Effects of dynamic indentation on the mechanical response of materials. J Mater Res. 2008;23:1604–1613. doi: 10.1557/JMR.2008.0205
  • Pharr GM, Strader JH, Oliver WC. Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J Mater Res. 2009;24:653–666. doi: 10.1557/jmr.2009.0096
  • Cordill MJ, Lund MS, Parker J, et al. The nano-jackhammer effect in probing near-surface mechanical properties. Int J Plast. 2009;25:2045–2058. doi: 10.1016/j.ijplas.2008.12.015
  • Siu KW, Ngan AHW. Oscillation-induced softening in copper and molybdenum from nano- to micro-length scales. Mater Sci Eng A. 2013;572:56–64. doi: 10.1016/j.msea.2013.02.037
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9
  • Pippan R, Scheriau S, Hohenwarter A, et al. Advantages and limitations of HPT: a review. Mater Sci Forum. 2008;584–586:16–21. doi: 10.4028/www.scientific.net/MSF.584-586.16
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • Bicelli LP, Bozzini B, Mele C, et al. A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci. 2008;3:356–408.
  • Leitner T, Hohenwarter A, Pippan R. Revisiting fatigue crack growth in various grain size regimes of Ni. Mater Sci Eng A. 2015;646:294–305. doi: 10.1016/j.msea.2015.08.071
  • Fritz R, Maier-Kiener V, Lutz D, et al. Interplay between sample size and grain size: single crystalline vs. ultrafine-grained chromium micropillars. Mater Sci Eng A. 2016;674:626–633. doi: 10.1016/j.msea.2016.08.015
  • Durst K, Maier V. Dynamic nanoindentation testing for studying thermally activated processes from single to nanocrystalline metals. Curr Opin Solid State Mater Sci. 2015;19:340–353. doi: 10.1016/j.cossms.2015.02.001
  • Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46:411–425. doi: 10.1016/S0022-5096(97)00086-0
  • Maier V, Durst K, Mueller J, et al. Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res. 2011;26:1421–1430. doi: 10.1557/jmr.2011.156
  • Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mater Trans A. 1999;30:601–610. doi: 10.1007/s11661-999-0051-7
  • Bucaille JL, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 2003;51:1663–1678. doi: 10.1016/S1359-6454(02)00568-2
  • Alkorta J, Martínez-Esnaola JM, Sevillano JG. Critical examination of strain-rate sensitivity measurement by nanoindentation methods: application to severely deformed niobium. Acta Mater. 2008;56:884–893. doi: 10.1016/j.actamat.2007.10.039
  • Peykov D, Martin E, Chromik RR, et al. Evaluation of strain rate sensitivity by constant load nanoindentation. J Mater Sci. 2012;47:7189–7200. doi: 10.1007/s10853-012-6665-y
  • Tabor D. The hardness of metals. Oxford: OUP; 1951.
  • Hart EW. Theory of the tensile test. Acta Metall. 1967;15:351–355. doi: 10.1016/0001-6160(67)90211-8
  • Wei Q, Cheng S, Ramesh KT, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A. 2004;381:71–79. doi: 10.1016/j.msea.2004.03.064