6,461
Views
81
CrossRef citations to date
0
Altmetric
Brief Overview

Interface structures and twinning mechanisms of twins in hexagonal metals

, , , & ORCID Icon
Pages 449-464 | Received 04 Mar 2017, Published online: 07 Jun 2017

References

  • Bufford D, Liu Y, Wang J, et al. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat Commun. 2014;5:1–9.
  • Wang J, Anderoglu O, Hirth JP, et al. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl Phys Lett. 2009;95:021908. doi: 10.1063/1.3176979
  • Zhang X, Misra A, Wang H, et al. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl Phys Lett. 2004;84:1096–1098. doi: 10.1063/1.1647690
  • Li X, Wei Y, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464:877–880. doi: 10.1038/nature08929
  • Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12:697–702. doi: 10.1038/nmat3646
  • Booth M, Randle V, Owen G. Time evolution of Σ3 annealing twins in secondary recrystallized nickel. J Microsc. 2005;217:162–166. doi: 10.1111/j.1365-2818.2005.01422.x
  • Fullman RL, Fisher JC. Formation of annealing twins during grain growth. J Appl Phys. 1951;22:1350–1355. doi: 10.1063/1.1699865
  • Hirth JP, Wang J, Tomé CN. Disconnections and other defects associated with twin interfaces. Prog Mater Sci. 2016;83:417–471. doi: 10.1016/j.pmatsci.2016.07.003
  • Wang J, Li N, Misra A. Structure and stability of Σ3 grain boundaries in face centered cubic metals. Philos Mag. 2013;93:315–327. doi: 10.1080/14786435.2012.716908
  • Li N, Wang J, Misra A, et al. Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 2011;59:5989–5996. doi: 10.1016/j.actamat.2011.06.007
  • Cottrell AH, Bilby BA. LX. A mechanism for the growth of deformation twins in crystals. Lond Edinb Dubl Phil Mag. 1951;42:573–581. doi: 10.1080/14786445108561272
  • Sleeswyk AW. Perfect dislocation pole models for twinning in the fcc and bcc lattices. Philos Mag. 1974;29:407–421. doi: 10.1080/14786437408213281
  • Venables JA. On dislocation pole models for twinning. Philos Mag. 1974;30:1165–1169. doi: 10.1080/14786437408207269
  • Hirth JP, Lothe J. Theory of dislocations. 2nd ed. New York: Wiley; 1982.
  • Russell KC, Aaronson HI. Sequences of precipitate nucleation. J Mater Sci. 1975;10:1991–1999. doi: 10.1007/BF00754490
  • Thompson N, Millard DJ. XXXVIII. Twin formation, in cadmium. Lond Edinb Dubl Phil Mag. 1952;43:422–440. doi: 10.1080/14786440408520175
  • Hirth JP, Pond RC, Hoagland RG, et al. Interface defects, reference spaces and the Frank-Bilby equation. Prog Mater Sci. 2013;58:749–823. doi: 10.1016/j.pmatsci.2012.10.002
  • Hirth JP, Pond RC. Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater. 1996;44:4749–4763. doi: 10.1016/S1359-6454(96)00132-2
  • Barrett CD, El Kadiri H. The roles of grain boundary dislocations and disclinations in the nucleation of twinning. Acta Mater. 2014;63:1–15. doi: 10.1016/j.actamat.2013.09.012
  • Serra A, Bacon DJ. A new model for twin growth in hcp metals. Philos Mag A. 1996;73:333–343. doi: 10.1080/01418619608244386
  • Serra A, Pond RC, Bacon DJ. Computer simulation of the structure and mobility of twinning dislocations in H.C.P. metals. Acta Metall Mater. 1991;39:1469–1480. doi: 10.1016/0956-7151(91)90232-P
  • Tu J, Zhang X, Wang J, et al. Structural characterization of twin boundaries in cobalt. Appl Phys Lett. 2013;103:051903. doi: 10.1063/1.4817180
  • Wang J, Beyerlein IJ, Tomé CN. Reactions of lattice dislocations with grain boundaries in Mg: implications on the micro scale from atomic-scale calculations. Int J Plast. 2014;56:156–172. doi: 10.1016/j.ijplas.2013.11.009
  • Wang J, Beyerlein IJ, Hirth JP, et al. Twinning dislocations on and planes in hexagonal close-packed crystals. Acta Mater. 2011;59:3990–4001. doi: 10.1016/j.actamat.2011.03.024
  • Hirth JP. Dislocations, steps and disconnections at interfaces. J Phys Chem Solids. 1994;55:985–989. doi: 10.1016/0022-3697(94)90118-X
  • Pond RC. Line defects in interfaces. In: Nabarro FRN, editor. Dislocations in solids. Vol. 8. Amsterdam: North-Holland; 1989. p. 1–66.
  • Pond RC, Ma X, Chai YW, et al. Topological modelling of martensitic transformations. In: Nabarro FRN, Hirth JP, editors. Dislocations in solids. Vol. 13. Amsterdam: North-Holland; 2007. p. 225–262.
  • Fullman RL. Interfacial free energy of coherent twin boundaries in copper. J Appl Phys. 1951;22:448–455. doi: 10.1063/1.1699982
  • Yu Q, Wang J, Jiang Y, et al. Twin-twin interactions in magnesium. Acta Mater. 2014;77:28–42. doi: 10.1016/j.actamat.2014.05.030
  • Ostapovets A, Serra A. Characterization of the matrix– twin interface of a twin during growth. Philos Mag. 2014;94:2827–2839. doi: 10.1080/14786435.2014.933906
  • Xu B, Capolungo L, Rodney D. On the importance of prismatic/basal interfaces in the growth of twins in hexagonal close packed crystals. Scr Mater. 2013;68:901–904. doi: 10.1016/j.scriptamat.2013.02.023
  • Wang J, Yadav SK, Hirth JP, et al. Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater Res Lett. 2013;1:126–132. doi: 10.1080/21663831.2013.792019
  • Liu Y, Li N, Shao S, et al. Characterizing the boundary lateral to the shear direction of deformation twins in magnesium. Nat Commun. 2016;7:1–6. doi: 10.11648/j.com.20160401.11
  • Bilby BA, Crocker AG. The theory of the crystallography of deformation twinning. Proc R Soc A. 1965;288:240–255. doi: 10.1098/rspa.1965.0216
  • Kelly AA, Knowles KM. Crystallography and crystal defects. 2nd ed. New York: Wiley; 2012.
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39:1–157. doi: 10.1016/0079-6425(94)00007-7
  • Howe JM, Pond RC, Hirth JP. The role of disconnections in phase transformations. Prog Mater Sci. 2009;54:792–838. doi: 10.1016/j.pmatsci.2009.04.001
  • Serra A, Bacon DJ, Pond RC. The crystallography and core structure of twinning dislocations in h.c.p. metals. Acta Metall. 1988;36:3183–3203. doi: 10.1016/0001-6160(88)90054-5
  • Barrett CD, El Kadiri H. Impact of deformation faceting on , and embryonic twin nucleation in hexagonal close-packed metals. Acta Mater. 2014;70:137–161. doi: 10.1016/j.actamat.2014.02.018
  • Khater HA, Serra A, Pond RC. Atomic shearing and shuffling accompanying the motion of twinning disconnections in Zirconium. Philos Mag. 2013;93:1279–1298. doi: 10.1080/14786435.2013.769071
  • Pond RC, Hirth JP, Serra A, et al. Atomic displacements accompanying deformation twinning: shears and shuffles. Mater Res Lett. 2016;4:185–190. doi: 10.1080/21663831.2016.1165298
  • Braisaz T, Ruterana P, Nouet G, et al. Investigation of twins in Zn using high-resolution electron microscopy: interfacial defects and interactions. Philos Mag A. 1997;75:1075–1095. doi: 10.1080/01418619708214012
  • Ezaz T, Sehitoglu H. Coupled shear and shuffle modes during twin growth in B2-NiTi. Appl Phys Lett. 2011;98:241906. doi: 10.1063/1.3596458
  • Morrow BM, McCabe RJ, Cerreta EK, et al. Observations of the atomic structure of tensile and compressive twin boundaries and twin–twin interactions in zirconium. Metall Mater Trans A. 2014;45:5891–5897. doi: 10.1007/s11661-014-2481-0
  • Bao L, Schuman C, Lecomte JS, et al. A study of twin variant selection and twin growth in titanium. Adv Eng Mater. 2011;13:928–932. doi: 10.1002/adem.201100055
  • Barnett MR. Twinning and the ductility of magnesium alloys: (Part I): “tension twins”. Mater Sci Eng A. 2007;464:1–7. doi: 10.1016/j.msea.2006.12.037
  • Chichili DR, Ramesh KT, Hemker KJ. The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater. 1998;46:1025–1043. doi: 10.1016/S1359-6454(97)00287-5
  • El Kadiri H, Barrett CD, Wang J, et al. Why are twins profuse in magnesium? Acta Mater. 2015;85:354–361. doi: 10.1016/j.actamat.2014.11.033
  • Li B, Zhang XY. Twinning with zero twinning shear. Scr Mater. 2016;125:73–79. doi: 10.1016/j.scriptamat.2016.07.004
  • Wang J, Hirth JP, Tomé CN. Twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 2009;57:5521–5530. doi: 10.1016/j.actamat.2009.07.047
  • Wang J, Hoagland RG, Hirth JP, et al. Nucleation of a twin in hexagonal close-packed crystals. Scr Mater. 2009;61:903–906. doi: 10.1016/j.scriptamat.2009.07.028
  • Serra A, Bacon DJ. Interaction of a moving twin boundary with perfect dislocations and loops in a hcp metal. Philos Mag. 2010;90:845–861. doi: 10.1080/14786430903023901
  • Hirth JP, Pond RC. Compatibility and accommodation in displacive phase transformations. Prog Mater Sci. 2011;56:586–636. doi: 10.1016/j.pmatsci.2011.01.003
  • Pond RC, Hirth JP. Defects at surfaces and interfaces. Solid State Phys. 1994;47:287–365. doi: 10.1016/S0081-1947(08)60641-4
  • Chu HJ, Wang J, Beyerlein IJ. Anomalous reactions of a supersonic coplanar dislocation dipole: bypass or twinning? Scr Mater. 2012;67:69–72. doi: 10.1016/j.scriptamat.2012.03.027
  • Wang J, Misra A, Hirth JP. Shear response of Σ3{112} twin boundaries in face-centered-cubic metals. Phys Rev B. 2011;83:064106. doi: 10.1103/PhysRevB.83.064106
  • Yu Q, Wang J, Jiang Y, et al. Co-zone twin interaction in magnesium single crystal. Mater Res Lett. 2014;2:82–88. doi: 10.1080/21663831.2013.867291
  • Wang J, Liu L, Tomé CN, et al. Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in Hexagonal-Close-Packed metals. Mater Res Lett. 2013;1:81–88. doi: 10.1080/21663831.2013.779601
  • Ostapovets A, Buršík J, Gröger R. Deformation due to migration of faceted twin boundaries in magnesium and cobalt. Philos Mag. 2015;95:4106–4117. doi: 10.1080/14786435.2015.1115134
  • Liu BY, Wang J, Li B, et al. Twinning-like lattice reorientation without a crystallographic twinning plane. Nat Commun. 2014;5:1–6.
  • Kim I, Kim J, Shin DH, et al. Deformation twins in pure titanium processed by equal channel angular pressing. Scr Mater. 2003;48:813–817. doi: 10.1016/S1359-6462(02)00513-4
  • Tu J, Zhang X, Ren Y, et al. Structural characterization of irregular-shaped twinning boundary in hexagonal close-packed metals. Mater Charact. 2015;106:240–244. doi: 10.1016/j.matchar.2015.05.032
  • Tu J, Zhang X, Zhou ZM, et al. Structural characterization of twin tip in deformed magnesium alloy. Mater Charact. 2015;110:39–43. doi: 10.1016/j.matchar.2015.10.012
  • Wang J, Beyerlein IJ, Hirth JP. Nucleation of elementary and twinning dislocations at a twin boundary in hexagonal close-packed crystals. Modell Simul Mater Sci Eng. 2012;20:024001. doi: 10.1088/0965-0393/20/2/024001
  • Sun Q, Zhang XY, Ren Y, et al. Interfacial structure of twin tip in deformed magnesium alloy. Scr Mater. 2014;90-91:41–44. doi: 10.1016/j.scriptamat.2014.07.012
  • Pond RC, Serra A, Bacon DJ. Dislocations in interfaces in the hcp metals—II. Mechanisms of defect mobility under stress. Acta Mater. 1999;47:1441–1453. doi: 10.1016/S1359-6454(99)00017-8
  • Li YJ, Chen YJ, Walmsley JC, et al. Faceted interfacial structure of twins in Ti formed during equal channel angular pressing. Scr Mater. 2010;62:443–446. doi: 10.1016/j.scriptamat.2009.11.039
  • Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 2010;58:2262–2270. doi: 10.1016/j.actamat.2009.12.013
  • Anderoglu O, Misra A, Wang H, et al. Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl Phys Lett. 2008;93:083108. doi: 10.1063/1.2969409
  • Dash S, Brown N. An investigation of the origin and growth of annealing twins. Acta Metall. 1963;11:1067–1075. doi: 10.1016/0001-6160(63)90195-0
  • Liu L, Wang J, Gong SK, et al. High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys Rev Lett. 2011;106:175504. doi: 10.1103/PhysRevLett.106.175504
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62. doi: 10.1016/j.pmatsci.2011.05.001
  • Romanov AE, Vladimirov VI. Vol. 9: Dislocations and Disclinations. In Nabarro FRN, editor. Dislocations in Solids. Amsterdam, North-Holland: Elsevier Science. 1992. p. 192–302.
  • Frank FC. I. Liquid crystals: on the theory of liquid crystals. Discuss Faraday Soc. 1958;25:19–28. doi: 10.1039/df9582500019
  • Anthony K, Essmann U, Seeger A, et al. Disclinations and the Cosserat-continuum with incompatible rotations. In: Kröner E, editor. Mechanics of generalized continua. IUTAM Symposia (International Union of Theoretical and Applied Mechanics). Springer, Berlin, Heidelberg; 1968. p. 355–358.
  • Simmons JA, De Wit R., Bullough R, editors. Fundamental aspects of dislocation theory: conference proceedings. National Bureau of Standards, April 21-25, 1969. Washington (DC): US National Bureau of Standards, U.S. Government Printing Office; 1970.
  • Hirth JP. A brief history of dislocation theory. Metall Trans A. 1985;16:2085–2090. doi: 10.1007/BF02670413
  • Hirth JP, Pond RC, Lothe J. Disconnections in tilt walls. Acta Mater. 2006;54:4237–4245. doi: 10.1016/j.actamat.2006.05.017
  • Khater HA, Serra A, Pond RC, et al. The disconnection mechanism of coupled migration and shear at grain boundaries. Acta Mater. 2012;60:2007–2020. doi: 10.1016/j.actamat.2012.01.001
  • Aaronson HI. Mechanisms of the massive transformation. Metall Mater Trans A. 2002;33:2285–2297. doi: 10.1007/s11661-002-0352-6
  • Massalski TB. Massive transformations. Mater Sci Eng. 1976;25:119–125. doi: 10.1016/0025-5416(76)90058-6
  • Kronberg ML. Plastic deformation of single crystals of sapphire: basal slip and twinning. Acta Metall. 1957;5:507–524. doi: 10.1016/0001-6160(57)90090-1
  • Kronberg ML. A structural mechanism for the twinning process on in hexagonal close packed metals. Acta Metall. 1968;16:29–34. doi: 10.1016/0001-6160(68)90068-0
  • Lann AL, Dubertret A. A development of Kronberg’s model for twins in HCP metals. Extension to twins. Phys Status Solidi A. 1979;51:497–507. doi: 10.1002/pssa.2210510223
  • Wang J, Beyerlein IJ. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Modell Simul Mater Sci Eng. 2012;20:024002. doi: 10.1088/0965-0393/20/2/024002
  • Wang J, Zhang R, Zhou C, et al. Characterizing interface dislocations by atomically informed Frank–Bilby theory. J Mater Res. 2013;28:1646–1657. doi: 10.1557/jmr.2013.34
  • Wang J, Zhang RF, Zhou CZ, et al. Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int J Plast. 2014;53:40–55. doi: 10.1016/j.ijplas.2013.07.002
  • Kucherov L, Tadmor EB. Twin nucleation mechanisms at a crack tip in an hcp material: molecular simulation. Acta Mater. 2007;55:2065–2074. doi: 10.1016/j.actamat.2006.10.056
  • Ostapovets A, Molnár P. On the relationship between the “shuffling-dominated” and “shear-dominated” mechanisms for twinning in magnesium. Scr Mater. 2013;69:287–290. doi: 10.1016/j.scriptamat.2013.04.019
  • Serra A, Bacon DJ, Pond RC. Comment on “atomic shuffling dominated mechanism for deformation twinning in magnesium”. Phys Rev Lett. 2010;104:029603. doi: 10.1103/PhysRevLett.104.029603
  • Enomoto M, Hirth JP. Computer simulation of ledge migration under elastic interaction. Metall Mater Trans A. 1996;27:1491–1500. doi: 10.1007/BF02649809
  • Kamat SV, Hirth JP, Müllner P. The effect of stress on the shape of a blocked deformation twin. Philos Mag A. 1996;73:669–680. doi: 10.1080/01418619608242989
  • Liu BY, Wan L, Wang J, et al. Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium. Scr Mater. 2015;100:86–89. doi: 10.1016/j.scriptamat.2014.12.020
  • Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr Mater. 2012;66:860–865. doi: 10.1016/j.scriptamat.2012.01.026
  • Olson GB, Cohen M. A general mechanism of martensitic nucleation: part I. General concepts and the FCC→ HCP transformation. Metall Trans A. 1976;7:1897–1904.
  • Frank FC, Ives MB. Orientation-dependent dissolution of germanium. J Appl Phys. 1960;31:1996–1999. doi: 10.1063/1.1735485
  • Hirth JP. Stabilization of strained multilayers by thin interlayers. J Mater Res. 1993;8:1572–1577. doi: 10.1557/JMR.1993.1572
  • Li B, Ma E. Atomic shuffling dominated mechanism for deformation twinning in magnesium. Phys Rev Lett. 2009;103:035503. doi: 10.1103/PhysRevLett.103.035503
  • Wang J, Yu Q, Jiang Y, et al. Twinning-associated boundaries in hexagonal close-packed metals. JOM. 2014;66(1):95–101. doi: 10.1007/s11837-013-0803-0
  • Liao X, Wang J, Nie J, et al. Deformation twinning in hexagonal materials. MRS Bull. 2016;41(4):314–319. doi: 10.1557/mrs.2016.64
  • Kumar MA, Beyerlein IJ, McCabe RJ, et al. Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nat Commun. 2016;7:13826. doi: 10.1038/ncomms13826
  • Xu S, Gong M, Schuman C, et al. Sequential twinning stimulated by other twins in titanium. Acta Mater. 2017;132:57–68. doi: 10.1016/j.actamat.2017.04.023