2,001
Views
5
CrossRef citations to date
0
Altmetric
Original Report

Out-of-plane ordering in quaternary MAX alloys: an alloy theoretic perspective

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-12 | Received 06 Jun 2017, Published online: 19 Oct 2017

References

  • Barsoum MW. MAX phases: properties of machinable ternary carbides and nitrides. Weinhem, Germany: Wiley-VCH Verlag GmbH; 2013.
  • Radovic M, Barsoum MW. MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull. 2013;92(3):20–27.
  • Barsoum MW. The MAX phases: A new class of solids: thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28(1):201–281. doi: 10.1016/S0079-6786(00)00006-6
  • Barsoum MW, Radovic M. Mechanical properties of the MAX phases. In: Buschow KHJ, Cahn R, Flemings M, Ilschner B, Kramer E, Mahajan S, Veyssiere P, editors. Encyclopedia of Materials: Science and Technology. Amsterdam: Elsevier; 2004. p. 1–16.
  • Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Ann Rev Mater Res. 2011;41:195–227. doi: 10.1146/annurev-matsci-062910-100448
  • Sun Z. Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev. 2011;56(3):143–166. doi: 10.1179/1743280410Y.0000000001
  • Barsoum M. The MAX Phases and Their Properties. In: Ceramics Science and Technology Volume 2: Materials and Properties. Wiley Online Library; 2010. p. 299–347.
  • Aryal S, Sakidja R, Barsoum MW, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Phys Status Solidi (B). 2014;251(8):1480–1497. doi: 10.1002/pssb.201451226
  • Naguib M, Bentzel G, Shah J, et al. New solid solution MAX phases:(Ti,V)AlC, (Nb,V)AlC, (Nb, V)AlC and (Nb,Zr)AlC. Mater Res Lett. 2014;2(4):233–240. doi: 10.1080/21663831.2014.932858
  • Talapatra A, Duong T, Son W, et al. High-throughput combinatorial study of the effect of m site alloying on the solid solution behavior of MAlC MAX phases. Phys Rev B. 2016;94(10):104106. doi: 10.1103/PhysRevB.94.104106
  • Arróyave R, Talapatra A, Duong T, et al. Does aluminum play well with others? intrinsic al-a alloying behavior in 211/312 MAX phases. Mater Res Lett. 2017;5(3):170–178.
  • Ashton M, Hennig RG, Broderick SR, et al. Computational Discovery of Stable MAX phases. Phys Rev B. 2016;94(5):054116. doi: 10.1103/PhysRevB.94.054116
  • Burr PA, Horlait D, Lee WE. Experimental and DFT investigation of (Cr, Ti)AlC MAX phases stability. arXiv preprint arXiv:160706162. 2016.
  • Li Y, Ding Y, Xiao B, et al. Anisotropic electrical and lattice transport properties of ordered quaternary phases CrTiAlC and MoTiAlC. A first principles study. Phys Lett A. 2016;380(44):3748–3755. doi: 10.1016/j.physleta.2016.09.015
  • Qing-He G, Zhi-Jun X, Ling T, et al. Evidence of the stability of MoTiAlC from first principles calculations and its thermodynamical and optical properties. Comput Mater Sci. 2016;118:77–86. doi: 10.1016/j.commatsci.2016.03.010
  • Mockute A, Dahlqvist M, Emmerlich J, et al. Synthesis and ab initio calculations of nanolaminated (Cr, Mn)AlC compounds. Phys Rev B. 2013;87(9):094113. doi: 10.1103/PhysRevB.87.094113
  • Cabioc'h T, Eklund P, Mauchamp V, et al. Tailoring of the thermal expansion of Cr 2 (Al,Ge)C phases. J Eur Ceram Soc. 2013;33(4):897–904. doi: 10.1016/j.jeurceramsoc.2012.10.008
  • Bei G, Pedimonte BJ, Fey T, et al. Oxidation behavior of MAX phase TiAlSnC solid solution. J Am Ceram Soc. 2013;96(5):1359–1362. doi: 10.1111/jace.12358
  • Yu W, Li S, Sloof WG. Microstructure and mechanical properties of a CrAl(Si) C solid solution. Mater Sci Eng: A. 2010;527(21):5997–6001. doi: 10.1016/j.msea.2010.05.093
  • Gao H, Benitez R, Son W, et al. Structural, physical and mechanical properties of Ti(AlSi)C solid solution with x=0–1. Mater Sci Eng: A. 2016;676:197–208. doi: 10.1016/j.msea.2016.08.098
  • Horlait D, Middleburgh SC, Chroneos A, et al. Synthesis and DFT investigation of new bismuth-containing MAX phases. Sci Rep. 2016;6(1):195. doi: 10.1038/srep18829
  • Liu Z, Wu E, Wang J, et al. Crystal structure and formation mechanism of (CrTi)AlC MAX phase. Acta Mater. 2014;73:186–193. doi: 10.1016/j.actamat.2014.04.006
  • Anasori B, Halim J, Lu J, et al. MoTiAlC: a new ordered layered ternary carbide. Scripta Mater. 2015;101:5–7. doi: 10.1016/j.scriptamat.2014.12.024
  • Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015;9(10):9507–9516. doi: 10.1021/acsnano.5b03591
  • Meshkian R, Tao Q, Dahlqvist M, et al. Theoretical stability and materials synthesis of a chemically ordered MAX phase, MoScAlC, and its two-dimensional derivate MoScC MXene. Acta Mater. 2017;125:476–480. doi: 10.1016/j.actamat.2016.12.008
  • Tunca B, Lapauw T, Karakulina OM, et al. Synthesis of MAX phases in the Zr-Ti-Al-C system. Inorg Chem. 2017;56(6):3489–3498. doi: 10.1021/acs.inorgchem.6b03057
  • Dahlqvist M, Rosen J. Order and disorder in quaternary atomic laminates from first-principles calculations. Phys Chem Chem Phys. 2015;17(47):31810–31821. doi: 10.1039/C5CP06021D
  • Van de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad. 2002;26(4):539–553. doi: 10.1016/S0364-5916(02)80006-2
  • Connolly J, Williams A. Density-functional theory applied to phase transformations in transition-metal alloys. Phys Rev B. 1983;27(8):5169–5172. doi: 10.1103/PhysRevB.27.5169
  • Anasori B, Dahlqvist M, Halim J, et al. Experimental and theoretical characterization of ordered MAX phases MoTiAlC and MoTiAlC. J Appl Phys. 2015;118(9):094304. doi: 10.1063/1.4929640
  • Saunders N. The Al-Mo system (Aluminum–Molybdenum). J Phase Equilib. 1997;18(4):370–378. doi: 10.1007/s11669-997-0063-1
  • Cadoff I, Nielsen JP. Titanium–Carbon phase diagram. J Met. 1953;5:1564.
  • Duong TC, Talapatra A, Son W, et al. On the stochastic phase stability of TiAlC–CrAlC. Sci Rep. 2017;7:5138. doi: 10.1038/s41598-017-05463-1
  • Duong TC, Talapatra A, Son W, et al. On the stochastic phase stability of TiAlC-CrAlC. arXiv preprint arXiv:170d402500, 2017.
  • Arróyave R, Radovic M. Ab initio investigation of TiAl(C,N) solid solutions. Phys Rev B. 2011;84(13):134112. doi: 10.1103/PhysRevB.84.134112
  • Winter M. Webelements, 1993. Available from: http://www.webelements.com/.
  • Barabash S, Ozolins V, Wolverton C. First-principles theory of the coherency strain, defect energetics, and solvus boundaries in the PbTe–AgSbTe system. Phys Rev B. 2008;78(21):214109. doi: 10.1103/PhysRevB.78.214109
  • Balluffi RW, Allen S, Carter WC. Kinetics of materials. Hoboken, NJ: Wiley; 2005.
  • Van der Ven A, Garikipati K, Kim S, et al. The role of coherency strains on phase stability in Li FePO. Needle crystallites minimize coherency strain and overpotential. J Electrochem Sco. 2009;156(11):A949–A957. doi: 10.1149/1.3222746
  • Wagemaker M, Mulder FM, Van der Ven A. The role of surface and interface energy on phase stability of nanosized insertion compounds. Adv Mater. 2009;21(2526):2703–2709. doi: 10.1002/adma.200803038
  • Ham B, Junkaew A, Arroyave R, et al. Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature. Int J Hydrogen Ener. 2013;38(20):8328–8341. doi: 10.1016/j.ijhydene.2013.04.098
  • Junkaew A, Ham B, Zhang X, et al. Stabilization of bcc mg in thin films at ambient pressure: experimental evidence and ab initio calculations. Mater Res Lett. 2013;1(3):161–167. doi: 10.1080/21663831.2013.804218
  • Mayrhofer PH, Hörling A, Karlsson L, et al. Self-organized nanostructures in the ti–al–n system. Appl Phys Lett. 2003;83(10):2049–2051. doi: 10.1063/1.1608464
  • Liu JZ, Zunger A. Thermodynamic states and phase diagrams for bulk-incoherent, bulk-coherent, and epitaxially-coherent semiconductor alloys: Application to cubic (Ga, In) N. Phys Rev B. 2008;77(20):205201.