1,149
Views
5
CrossRef citations to date
0
Altmetric
Original Report

Single-step Au-catalysed synthesis and microstructural characterization of core–shell Ge/In–Te nanowires by MOCVD

Pages 29-35 | Received 29 Jul 2017, Published online: 18 Oct 2017

References

  • Moon J, Kim J, Chen ZCY, et al. Gate-modulated thermoelectric power factor of hole gas in Ge–Si core–shell nanowires. Nano Lett. 2013;13:1196–1202. doi: 10.1021/nl304619u
  • Chen W-H, Liu C-H, Li Q-L, et al. Intrinsic Ge nanowire nonvolatile memory based on a simple core-shell structure. Nanotechnology. 2014;25:75201. doi: 10.1088/0957-4484/25/7/075201
  • Xiang J, Lu W, Hu Y, et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature. 2006;441:489–493. doi: 10.1038/nature04796
  • Hu S, Kawamura Y, Huang KCY, et al. Thermal stability and surface passivation of Ge nanowires coated by epitaxial SiGe shells. Nano Lett. 2012;12:1385–1391. doi: 10.1021/nl204053w
  • Ge S, Jiang K, Lu X, et al. Orientation-controlled growth of single-crystal silicon-nanowire arrays. Adv Mater. 2005;17:56–61. doi: 10.1002/adma.200400474
  • Li CB, Usami K, Muraki T, et al. The impacts of surface conditions on the vapor-liquid-solid growth of germanium nanowires on Si (100) substrate. Appl Phys Lett. 2008;93:41917. doi: 10.1063/1.2968201
  • Song MS, Jung JH, Kim Y, et al. Vertically standing Ge nanowires on GaAs(110) substrates. Nanotechnology. 2008;19:125602. doi: 10.1088/0957-4484/19/12/125602
  • Lu W, Xiang J, Timko BP, et al. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc Natl Acad Sci. 2005;102:10046–10051. doi: 10.1073/pnas.0504581102
  • Lauhon LJ, Gudiksen MS, Wang D, et al. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature. 2002;420:57–61. doi: 10.1038/nature01141
  • Zargarova MI, Akperov MM. Phase equilibria in the ternary system In-Ge-Te. Izv Akad Nauk SSSR, Neorg Mater. 1973;9:1138–1141.
  • Zhu H, Chen K, Ge Z, et al. Binary semiconductor In2Te3 for the application of phase-change memory device. J Mater Sci. 2010;45:3569–3574. doi: 10.1007/s10853-010-4401-z
  • Jana MK, Pal K, Waghmare UV, et al. The origin of ultralow thermal conductivity in InTe: lone-pair-induced an harmonic rattling. Angew Chemie Int Ed. 2016;55:7792–7796. doi: 10.1002/anie.201511737
  • Wang J, Jin F, Cao X, et al. In2Te3 thin films: a promising nonlinear optical material with tunable nonlinear absorption response. RSC Adv. 2016;6:103357–103363. doi: 10.1039/C6RA17352G
  • Safdar M, Wang Z, Mirza M, et al. Telluride-based nanorods and nanosheets: synthesis, evolution and properties. J Mater Chem A. 2013;1:1427–1432. doi: 10.1039/C2TA00470D
  • Biswas R, Deb P, Das S. Novel optoelectronic properties in barbed wire nanophotonic structures of indium telluride. Opt Mater. 2015;47:586–588. doi: 10.1016/j.optmat.2015.06.028
  • Hardtdegen H, Hollfelder M, Meyer R, et al. MOVPE growth of GaAs using a N2 carrier. J Cryst Growth. 1992;124:420–426. doi: 10.1016/0022-0248(92)90494-4
  • Chen L, Cai F, Otuonye U, et al. Vertical Ge/Si core/shell nanowire junctionless transistor. Nano Lett. 2016;16:420–426. doi: 10.1021/acs.nanolett.5b04038
  • Arjmand M, Ke JH, Szlufarska I. Control of surface induced phase separation in immiscible semiconductor alloy core-shell nanowires. Comput Mater Sci. 2017;130:50–55. doi: 10.1016/j.commatsci.2017.01.005
  • Chattopadhyay T, Santandrea R, Von Schnering H. Temperature and pressure dependence of the crystal structure of InTe: a new high pressure phase of InTe. J Phys Chem Solids. 1985;46:351–356. doi: 10.1016/0022-3697(85)90178-7
  • Parker JH, Feldman DW, Ashkin M. Raman scattering by silicon and germanium. Phys Rev. 1967;155:712–714. doi: 10.1103/PhysRev.155.712
  • Nizametdinova MA. Raman spectrum of InTe and TlSe single crystals. Phys Status Solidi. 1980;97:K9–K12. doi: 10.1002/pssb.2220970145
  • Vinod EM, Singh AK, Ganesan R, et al. Effect of selenium addition on the GeTe phase change memory alloys. J Alloys Compd. 2012;537:127–132. doi: 10.1016/j.jallcom.2012.05.064
  • Andrikopoulos KS, Yannopoulos SN, Kolobov AV, et al. Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials. J Phys Chem Solids. 2007;68:1074–1078. doi: 10.1016/j.jpcs.2007.02.027
  • Adhikari H, Marshall AF, Chidsey CED, et al. Germanium nanowire epitaxy: shape and orientation control. Nano Lett. 2006;6:318–323. doi: 10.1021/nl052231f
  • Schmidt V, Senz S, Gösele U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005;5:931–935. doi: 10.1021/nl050462g
  • Wang CX, Hirano M, Hosono H. Origin of diameter-dependent growth direction of silicon nanowires. Nano Lett. 2006;6:1552–1555. doi: 10.1021/nl060096g
  • Hanrath T, Korgel BA. Crystallography and surface faceting of germanium nanowires. Small. 2005;1:717–721. doi: 10.1002/smll.200500033
  • Ebaid M, Kang J-H, Yoo Y-S, et al. Vertically aligned InGaN nanowires with engineered axial In composition for highly efficient visible light emission. Sci Rep. 2015;5:951. doi: 10.1038/srep17003
  • Lee YM, Baik J, Shin H-J, et al. Observation of chemical separation of In3Sb1Te2 thin film during phase transition. Appl Surf Sci. 2014;292:986–989. doi: 10.1016/j.apsusc.2013.12.096
  • Park SJ, Jang MH, Park S-J, et al. Characteristics of phase transition and separation in a In–Ge–Sb–Te system. Appl Surf Sci. 2012;258:9786–9791. doi: 10.1016/j.apsusc.2012.06.030
  • Choi H-J, Johnson JC, He R, et al. Self-organized GaN quantum wire UV lasers. J Phys Chem B. 2003;107:8721–8725. doi: 10.1021/jp034734k
  • Tourbot G, Bougerol C, Grenier A, et al. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE. Nanotechnology. 2011;22:75601. doi: 10.1088/0957-4484/22/7/075601