2,107
Views
25
CrossRef citations to date
0
Altmetric
Original Report

Grain boundary-assisted deformation in graphene–Al nanolaminated composite micro-pillars

, , , , , , , , & show all
Pages 41-48 | Received 23 Jun 2017, Published online: 19 Oct 2017

References

  • Dunlop JWC, Fratzl P. Biological composites. Annu Rev Mater Res. 2010;40:1–24.
  • Mayer G. Rigid biological systems as models for synthetic composites. Science. 2005;310:1144–1147.
  • Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–822.
  • Ji BH, Gao HJ. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids. 2004;52:1963–1990.
  • Espinosa HD, Juster AL, Latourte FJ, et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat Commun. 2011;2:173.
  • Bonderer LJ, Studart AR, Gauckler LJ. Bioinspired design and assembly of platelet reinforced polymer films. Science. 2008;319:1069–1073.
  • Cheng QF, Duan JL, Zhang Q, et al. Learning from nature: constructing integrated graphene-based artificial nacre. ACS Nano. 2015;9:2231–2234.
  • Li YH, Housten W, Zhao YM, et al. Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing. Nanotechnology. 2007;18:205607.
  • Kang TJ, Yoon JW, Kim DI, et al. Sandwich-type laminated nanocomposites developed by selective dip-coating of carbon nanotubes. Adv Mater. 2007;19:427–432.
  • Jiang L, Li ZQ, Fan GL, et al. Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr Mater. 2012;66:331–334.
  • Hwang J, Yoon T, Jin SH, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater. 2013;25:6724–6729.
  • Kim Y, Lee J, Yeom MS, et al. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat Commun. 2013;4:2114.
  • Li Z, Fan GL, Tan ZQ, et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology. 2014;25:325601.
  • Li Z, Guo Q, Li ZQ, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett. 2015;15:8077–8083.
  • Feng SW, Guo Q, Li Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars. Acta Mater. 2017;125:98–108.
  • Kunz A, Pathak S, Greer JR. Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 2011;59:4416–4424.
  • Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005;53:1821–1830.
  • Nix WD, Greer JR, Feng G, et al. Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films. 2007;515:3152–3157.
  • Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science. 2004;305:986–989.
  • Zhang H, Schuster BE, Wei Q, et al. The design of accurate micro-compression experiments. Scr Mater. 2006;54:181–186.
  • Guo XL, Guo Q, Li ZQ, et al. Interfacial strength and deformation mechanism of SiC–Al composite micro-pillars. Scr Mater. 2016;114:56–59.
  • Guo Q, Landau P, Hosemann P, et al. Helium implantation effects on the compressive response of Cu nanopillars. Small. 2013;9:691–696.
  • Mayer CR, Yang LW, Singh SS, et al. Anisotropy, size, and aspect ratio effects on micropillar compression of Al/SiC nanolaminate composites. Acta Mater. 2016;114:25–32.
  • Guo W, Jägle E, Yao JH, et al. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 2014;80:94–106.
  • Zhang JY, Lei S, Niu J, et al. Intrinsic and extrinsic size effects on deformation in nanolayered Cu/Zr micropillars: from bulk-like to small-volume materials behavior. Acta Mater. 2012;60:4054–4064.
  • Gu XW, Loynachan CN, Wu ZX, et al. Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 2012;12:6385–6392.
  • Greer JR, De Hosson JTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56:654–724.
  • Kim Y, Lee S, Jeon JB, et al. Effect of a high angle grain boundary on deformation behaviour of Al nanopillars. Scr Mater. 2015;107:5–9.
  • Ungár T, Li L, Tichy G, et al. Work softening in nanocrystalline materials induced by dislocation annihilation. Scr Mater. 2011;64:876–879.
  • Tschoppa MA, McDowell DL. Grain boundary dislocation sources in nanocrystalline copper. Scr Mater. 2008;58:299–302.
  • Zhang JY, Liu G, Sun J. Strain rate effects on the mechanical response in multi- and single-crystalline Cu micropillars: grain boundary effects. Int J Plasticity. 2013;50:1–17.
  • Ng KS, Ngan AHW. Deformation of micron-sized aluminium bi-crystal pillars. Philos Mag. 2009;89:3013–3026.
  • Lei S, Zhang JY, Niu JJ, et al. Intrinsic size-controlled strain hardening behavior of nanolayered Cu/Zr micropillars. Scr Mater. 2012;66:706–709.
  • Lotfian S, Rodríguez M, Yazzie KE, et al. High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater. 2013;61:4439–4451.
  • Singh DRP, Chawla N, Tang G, et al. Micropillar compression of Al/SiC nanolaminates. Acta Mater. 2010;58:6628–6636.
  • Jennings AT, Gross C, Greer F, et al. Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater. 2012;60:3444–3455.
  • Carlton CE, Ferreira PJ. What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater. 2007;55:3749–3756.
  • Wang YM, Hamza AV, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 2006;54:2715–2726.
  • Qin EW, Lu L, Tao NR, et al. Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Mater. 2009;57:6215–6225.
  • Packard CE, Schuh CA. Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 2007;55:5348–5358.