1,776
Views
18
CrossRef citations to date
0
Altmetric
Original Report

Visualization of dislocations through electron channeling contrast imaging at fatigue crack tip, interacting with pre-existing dislocations

, ORCID Icon, &
Pages 61-66 | Received 08 Sep 2017, Published online: 25 Oct 2017

References

  • Ohr S. An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater Sci Eng. 1985;72(1):1–35.
  • Cleveringa HHM, Van Der Giessen E, Needleman A. A discrete dislocation analysis of residual stresses in a composite material [Article]. Philos Mag A. 1999;79(4):893–920.
  • Rice J. Mechanics of crack tip deformation and extension by fatigue. Fatigue crack propagation. Philadelphia: ASTM International; 1967.
  • Kruml T, Pola J, Obrtli K, et al. Dislocation structures in the bands of localised cyclic plastic strain in austenitic 316L and austenitic-ferritic duplex stainless steels. Acta Mater. 1997;45(12):5145–5151.
  • Gerold V, Karnthaler H. On the origin of planar slip in fcc alloys. Acta Metall. 1989;37(8):2177–2183.
  • Oda K, Kondo N, Shibata K. X-ray absorption fine structure analysis of interstitial (C, N)-substitutional (Cr) complexes in austenitic stainless steels. ISIJ Int. 1990;30(8):625–631.
  • Habib K, Koyama M, Tsuchiyama T, et al. Fatigue crack non-propagation assisted by nitrogen-enhanced dislocation planarity in austenitic stainless steels. Int J Fatigue. 2017;104:158–170.
  • Ahmed J, Wilkinson A, Roberts S. Characterizing dislocation structures in bulk fatigued copper single crystals using electron channelling contrast imaging (ECCI). Philos Mag Lett. 1997;76(4):237–246.
  • Koyama M, Tasan CC, Akiyama E, et al. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater. 2014;70:174–187.
  • Ahmed J, Roberts SG, Wilkinson A. Characterizing dislocation structure evolution during cyclic deformation using electron channelling contrast imaging. Philos Mag. 2006;86(29–31):4965–4981.
  • Koyama M, Springer H, Merzlikin SV, et al. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. Int J Hydrogen Energy. 2014;39(9):4634–4646.
  • Ng B, Simkin B, Crimp M. Application of the electron channeling contrast imaging technique to the study of dislocations associated with cracks in bulk specimens. Ultramicroscopy. 1998;75(3):137–145.
  • Gutierrez-Urrutia I, Raabe D. Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope. Scr Mater. 2012;66(6):343–346.
  • Zaefferer S, Elhami N-N. Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 2014;75:20–50.
  • Onomoto T, Terazawa Y, Tsuchiyama T, et al. Effect of grain refinement on tensile properties in Fe-25Cr-1N alloy. ISIJ Int. 2009;49(8):1246–1252.
  • Habib K, Koyama M, Noguchi H. Impact of Mn–C couples on fatigue crack growth in austenitic steels: Is the attractive atomic interaction negative or positive? Int J Fatigue. 2017;99(Part 1):1–12.
  • Simmons J. Overview: high-nitrogen alloying of stainless steels. Mater Sci Eng A. 1996;207(2):159–169.
  • Reed RP. Nitrogen in austenitic stainless steels. JOM. 1989;41(3):16–21.
  • Ojima M, Adachi Y, Tomota Y, et al. Work hardening mechanism in high nitrogen austenitic steel studied by in situ neutron diffraction and in situ electron backscattering diffraction. Mater Sci Eng A. 2009;527(1):16–24.
  • Gutierrez-Urrutia I, Zaefferer S, Raabe D. Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scr Mater. 2009;61(7):737–740.
  • Kubota S, Xia Y, Tomota Y. Work-hardening behavior and evolution of dislocation-microstructures in high-nitrogen bearing austenitic steels. ISIJ Int. 1998;38(5):474–481.