22,118
Views
299
CrossRef citations to date
0
Altmetric
Brief Overview

Microstructures and properties of high-entropy alloy films and coatings: a review

, &
Pages 199-229 | Received 31 Aug 2017, Published online: 20 Feb 2018

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218. doi: 10.1016/j.msea.2003.10.257
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61:5743–5755. doi: 10.1016/j.actamat.2013.06.018
  • Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics. 2010;18:1758–1765. doi: 10.1016/j.intermet.2010.05.014
  • Tong CJ, Chen MR, Chen SK, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005;36:1263–1271. doi: 10.1007/s11661-005-0218-9
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109:103505. doi: 10.1063/1.3587228
  • Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013;61:2628–2638. doi: 10.1016/j.actamat.2013.01.042
  • Santodonato LJ, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun. 2015;6:5964(1–13). doi: 10.1038/ncomms6964
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Singh S, Wanderka N, Murty BS, et al. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011;59:182–190. doi: 10.1016/j.actamat.2010.09.023
  • Hemphill MA, Yuan T, Wang GY, et al. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012;60:5723–5734. doi: 10.1016/j.actamat.2012.06.046
  • Tong CJ, Chen YL, Chen SK, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A. 2005;36:881–893. doi: 10.1007/s11661-005-0283-0
  • Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6:6529(1–10). doi: 10.1038/ncomms7529
  • Gao MC, Yeh, J.-W., Liaw PK, et al. High-entropy alloys: fundamentals and applications. Switzerland and New York: Springer International Publishing; 2016.
  • Diao HY, Feng R, Dahmen KA, et al. Fundamental deformation behavior in high-entropy alloys: An overview. Curr Opin Solid State Mat Sci. 2017;21:252–266.
  • Tang Z, Yuan T, Tsai CW, et al. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 2015;99:247–258. doi: 10.1016/j.actamat.2015.07.004
  • Chen ST, Tang WY, Kuo YF, et al. Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mat Sci Eng A-Struct. 2010;527:5818–5825. doi: 10.1016/j.msea.2010.05.052
  • Liu CM, Wang HM, Zhang SQ, et al. Microstructure and oxidation behavior of new refractory high entropy alloys. J Alloy Compd. 2014;583:162–169. doi: 10.1016/j.jallcom.2013.08.102
  • Chen YY, Duval T, Hung UD, et al. Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel. Corros Sci. 2005;47:2257–2279. doi: 10.1016/j.corsci.2004.11.008
  • Chen YY, Hong UT, Shih HC, et al. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corros Sci. 2005;47:2679–2699. doi: 10.1016/j.corsci.2004.09.026
  • Hsu YJ, Chiang WC, Wu JK. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys. 2005;92:112–117. doi: 10.1016/j.matchemphys.2005.01.001
  • Kao YF, Chen SK, Chen TJ, et al. Electrical, magnetic, and hall properties of AlxCoCrFeNi high-entropy alloys. J Alloy Compd. 2011;509:1607–1614. doi: 10.1016/j.jallcom.2010.10.210
  • Kozelj P, Vrtnik S, Jelen A, et al. Discovery of a superconducting high-entropy alloy. Phys Rev Lett. 2014;113:107001. doi: 10.1103/PhysRevLett.113.107001
  • Zhang Y, Zuo TT, Cheng YQ, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep. 2013;3:1455(1–7).
  • Pickering EJ, Jones NG. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 2016;61:183–202. doi: 10.1080/09506608.2016.1180020
  • Tsai M-H. Physical properties of high entropy alloys. Entropy. 2013;15:5338–5345. doi: 10.3390/e15125338
  • Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett. 2014;2:107–123. doi: 10.1080/21663831.2014.912690
  • Shi Y, Yang B, Liaw PK. Corrosion-resistant high-entropy alloys: a review. Metals. 2017;7:43(1–18). doi: 10.3390/met7020043
  • Braic M, Braic V, Vladescu A, et al. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films. Prog Nat Sci. 2014;24:305–312. doi: 10.1016/j.pnsc.2014.06.001
  • Shen W-J, Tsai M-H, Yeh J-W. Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings. Coatings. 2015;5:312–325. doi: 10.3390/coatings5030312
  • An Z, Jia H, Wu Y, et al. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Mater Res Lett. 2015;3:203–209. doi: 10.1080/21663831.2015.1048904
  • Ji X, Duan H, Zhang H, et al. Slurry erosion resistance of laser clad NiCoCrFeAl3 high-entropy alloy coatings. Tribol T. 2015;58:1119–1123. doi: 10.1080/10402004.2015.1044148
  • Zhang H, Wu W, He Y, et al. Formation of core–shell structure in high entropy alloy coating by laser cladding. Appl Surf Sci. 2016;363:543–547. doi: 10.1016/j.apsusc.2015.12.059
  • Yue T, Xie H, Lin X, et al. Microstructure of laser Re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying. Entropy. 2013;15:2833–2845. doi: 10.3390/e15072833
  • Yao C-Z, Zhang P, Liu M, et al. Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim Acta. 2008;53:8359–8365. doi: 10.1016/j.electacta.2008.06.036
  • Liu D, Cheng JB, Ling H. Electrochemical behaviours of (NiCoFeCrCu)95 B5 high entropy alloy coatings. Mater Sci Tech. 2015;31:1159–1164. doi: 10.1179/1743284714Y.0000000739
  • Cheng K-H, Lai C-H, Lin S-J, et al. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films. 2011;519:3185–3190. doi: 10.1016/j.tsf.2010.11.034
  • Huang P-K, Yeh J-W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf Coat Tech. 2009;203:1891–1896. doi: 10.1016/j.surfcoat.2009.01.016
  • Cheng JB, Liang XB, Xu BS. Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surf Coat Tech. 2014;240:184–190. doi: 10.1016/j.surfcoat.2013.12.053
  • Hsueh H-T, Shen W-J, Tsai M-H, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)1001−xNx. Surf Coat Tech. 2012;206:4106–4112. doi: 10.1016/j.surfcoat.2012.03.096
  • Sheng W, Yang X, Wang C, et al. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy. 2016;18:226(1–7). doi: 10.3390/e18060226
  • Cheng C-Y, Yeh J-W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties. Mater Lett. 2016;185:456–459. doi: 10.1016/j.matlet.2016.09.050
  • Lin P-C, Cheng C-Y, Yeh J-W, et al. Soft magnetic properties of high-entropy Fe-Co-Ni-Cr-Al-Si thin films. Entropy. 2016;18:308(1–9).
  • Yan XH, Li JS, Zhang WR, et al. A brief review of high-entropy films. Mater Chem Phys. 2017. doi:10.1016/j.matchemphys.2017.07.078.
  • Katakam S, Joshi SS, Mridha S, et al. Laser assisted high entropy alloy coating on aluminum: microstructural evolution. J Appl Phys. 2014;116:104906. doi: 10.1063/1.4895137
  • Feng X, Tang G, Sun M, et al. Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films. Surf Coat Tech. 2013;228:S424–S427. doi: 10.1016/j.surfcoat.2012.05.038
  • Braeckman BR, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films. 2015;580:71–76. doi: 10.1016/j.tsf.2015.02.070
  • Qiu XW, Zhang YP, Liu CG. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings. J Alloy Compd. 2014;585:282–286. doi: 10.1016/j.jallcom.2013.09.083
  • Yue TM, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J Alloy Compd. 2014;587:588–593. doi: 10.1016/j.jallcom.2013.10.254
  • Shon Y, Joshi SS, Katakam S, et al. Laser additive synthesis of high entropy alloy coating on aluminum: corrosion behavior. Mater Lett. 2015;142:122–125. doi: 10.1016/j.matlet.2014.11.161
  • Huang PK, Yeh JW, Shun TT, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater. 2004;6:74–78. doi: 10.1002/adem.200300507
  • Wang LM, Chen CC, Yeh JW, et al. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys. Mater Chem Phys. 2011;126:880–885. doi: 10.1016/j.matchemphys.2010.12.022
  • Tian L-H, Xiong W, Liu C, et al. Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating. J Mater Eng Perfor. 2016;25:5513–5521. doi: 10.1007/s11665-016-2396-6
  • Li H, Sun H, Wang C, et al. Controllable electrochemical synthesis and magnetic behaviors of Mg–Mn–Fe–Co–Ni–Gd alloy films. J Alloy Compd. 2014;598:161–165. doi: 10.1016/j.jallcom.2014.02.051
  • Soare V, Burada M, Constantin I, et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl Surf Sci. 2015;358:533–539. doi: 10.1016/j.apsusc.2015.07.142
  • Yao C, Wei B, Zhang P, et al. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm. J Rare Earth. 2011;29:133–137. doi: 10.1016/S1002-0721(10)60418-8
  • Cheng J, Liu D, Liang X, et al. Evolution of microstructure and mechanical properties of in situ synthesized TiC–TiB2/CoCrCuFeNi high entropy alloy coatings. Surf Coat Tech. 2015;281:109–116. doi: 10.1016/j.surfcoat.2015.09.049
  • Sudha C, Shankar P, Rao RVS, et al. Microchemical and microstructural studies in a PTA weld overlay of Ni–Cr–Si–B alloy on AISI 304 L stainless steel. Surf Coat Tech. 2008;202:2103–2112. doi: 10.1016/j.surfcoat.2007.08.063
  • Cheng JB, Liang XB, Wang ZH, et al. Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process. Plamsa Chem Plasma P. 2013;33:979–992. doi: 10.1007/s11090-013-9469-1
  • Li QH, Yue TM, Guo ZN, et al. Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metal Mater Trans A. 2012;44:1767–1778. doi: 10.1007/s11661-012-1535-4
  • Huo W-Y, Shi H-F, Ren X, et al. Microstructure and wear behavior of CoCrFeMnNbNi high-entropy alloy coating by TIG cladding. Adv Mater Sci Eng. 2015;2015:647351(1–5).
  • Pogrebnjak AD, Yakushchenko IV, Bagdasaryan AA, et al. Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions. Mater Chem Phys. 2014;147:1079–1091. doi: 10.1016/j.matchemphys.2014.06.062
  • Zhang H, He Y-Z, Pan Y, et al. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. J Alloy Compd. 2014;600:210–214. doi: 10.1016/j.jallcom.2014.02.121
  • Wu ZF, Wang XD, Cao QP, et al. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x=0 and 2.5) high-entropy alloy films. J Alloy Compd. 2014;609:137–142. doi: 10.1016/j.jallcom.2014.04.094
  • Braeckman BR, Depla D. Structure formation and properties of sputter deposited Nbx-CoCrCuFeNi high entropy alloy thin films. J Alloy Compd. 2015;646:810–815. doi: 10.1016/j.jallcom.2015.06.097
  • Dolique V, Thomann AL, Brault P, et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy. Mater Chem Phys. 2009;117:142–147. doi: 10.1016/j.matchemphys.2009.05.025
  • Dolique V, Thomann AL, Brault P, et al. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surf Coat Tech. 2010;204:1989–1992. doi: 10.1016/j.surfcoat.2009.12.006
  • Braeckman BR, Misják F, Radnóczi G, et al. The influence of Ge and in addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films. Thin Solid Films. 2016;616:703–710. doi: 10.1016/j.tsf.2016.09.021
  • Huang C, Zhang Y, Shen J, et al. Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf Coat Tech. 2011;206:1389–1395. doi: 10.1016/j.surfcoat.2011.08.063
  • Jiang L, Wu W, Cao Z, et al. Microstructure evolution and wear behavior of the laser cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb high-entropy alloy coatings. J Therm Spray Tech. 2016;25:806–814. doi: 10.1007/s11666-016-0397-5
  • Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics. 2013;41:96–103. doi: 10.1016/j.intermet.2013.05.002
  • Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci. 2011;21:433–446. doi: 10.1016/S1002-0071(12)60080-X
  • Zhang Y, Yang X, Liaw PK. Alloy design and properties optimization of high-entropy alloys. JOM. 2012;64:830–838. doi: 10.1007/s11837-012-0366-5
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10:534–538. doi: 10.1002/adem.200700240
  • Feng R, Gao M, Lee C, et al. Design of light-weight high-entropy alloys. Entropy. 2016;18:333(1–21). doi: 10.3390/e18090333
  • Zhang Y, Lu ZP, Ma SG, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 2014;4:57–62. doi: 10.1557/mrc.2014.11
  • Cai Z, Jin G, Cui X, et al. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying. Mater Charact. 2016;120:229–233. doi: 10.1016/j.matchar.2016.09.011
  • Zhang S, Wu CL, Zhang CH. Phase evolution characteristics of FeCoCrAlCuVxNi high entropy alloy coatings by laser high-entropy alloying. Mater Lett. 2015;141:7–9. doi: 10.1016/j.matlet.2014.11.017
  • Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29. doi: 10.1016/S1359-6454(99)00285-2
  • Rong YH. Phase transformations and phase stability in nanocrystalline materials. Curr Opin Solid State Mat Sci. 2005;9:287–295. doi: 10.1016/j.cossms.2006.07.003
  • Li W, Liu P, Ma F, et al. A thermodynamic explanation for martensitic phase stability of nanostructured Fe–Ni and Co metallic materials. Physica B. 2011;406:2540–2542. doi: 10.1016/j.physb.2011.03.057
  • Meng QP, Rong YH, Hsu TY. Nucleation barrier for phase transformations in nanosized crystals. Phys Rev B. 2002;65:174118(1–7). doi: 10.1103/PhysRevB.65.174118
  • Xiao F, Cheng W, Jin XJ. Phase stability in pulse electrodeposited nanograined Co and Fe-Ni. Scripta Mater. 2010;62:496–499. doi: 10.1016/j.scriptamat.2009.12.024
  • Tolbert SH, Alivisatos AP. Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals. Science. 1994;265:373–376. doi: 10.1126/science.265.5170.373
  • Li S, Zheng WT, Jiang Q. Size and pressure effects on solid transition temperatures of ZrO2. Scripta Mater. 2006;54:2091–2094. doi: 10.1016/j.scriptamat.2006.03.002
  • McHale JM, Auroux A, Perrotta AJ, et al. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science. 1997;277:788–791. doi: 10.1126/science.277.5327.788
  • An ZA, Ding H, Meng QP, et al. Kinetic equation of the effect of thickness on grain growth in nanocrystalline films. Scripta Mater. 2009;61:1012–1015. doi: 10.1016/j.scriptamat.2009.08.014
  • Chang Z-C, Liang S-C, Han S, et al. Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering. Nucl Instrum Meth B. 2010;268:2504–2509. doi: 10.1016/j.nimb.2010.05.039
  • Lai C-H, Lin S-J, Yeh J-W, et al. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf Coat Tech. 2006;201:3275–3280. doi: 10.1016/j.surfcoat.2006.06.048
  • Liang S-C, Tsai D-C, Chang Z-C, et al. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl Surf Sci. 2011;258:399–403. doi: 10.1016/j.apsusc.2011.09.006
  • Ren B, Shen Z, Liu Z. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering. J Alloy Compd. 2013;560:171–176. doi: 10.1016/j.jallcom.2013.01.148
  • Liu L, Zhu JB, Hou C, et al. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Mater Design. 2013;46:675–679. doi: 10.1016/j.matdes.2012.11.001
  • Tsai C-W, Lai S-W, Cheng K-H, et al. Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid Films. 2012;520:2613–2618. doi: 10.1016/j.tsf.2011.11.025
  • Feng X, Tang G, Ma X, et al. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation. Nucl Instrum Meth B. 2013;301:29–35. doi: 10.1016/j.nimb.2013.03.001
  • Yu R-S, Huang C-J, Huang R-H, et al. Structure and optoelectronic properties of multi-element oxide thin film. Appl Surf Sci. 2011;257:6073–6078. doi: 10.1016/j.apsusc.2011.01.139
  • Huang Y-S, Chen L, Lui H-W, et al. Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Mater Sci Eng A. 2007;457:77–83. doi: 10.1016/j.msea.2006.12.001
  • Tsau C-H, Yang Y-C, Lee C-C, et al. The low electrical resistivity of the high-entropy alloy oxide thin films. Procedia Eng. 2012;36:246–252. doi: 10.1016/j.proeng.2012.03.037
  • Braic M, Braic V, Balaceanu M, et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering. Surf Coat Tech. 2010;204:2010–2014. doi: 10.1016/j.surfcoat.2009.10.049
  • Huang C, Zhang YZ, Vilar R. Microstructure characterization of laser clad TiVCrAlSi high entropy alloy coating on Ti-6Al-4V substrate. Adv Mater Res. 2011;154-155:621–625. doi: 10.4028/www.scientific.net/AMR.154-155.621
  • Zhang H, Pan Y, He Y, et al. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl Surf Sci. 2011;257:2259–2263. doi: 10.1016/j.apsusc.2010.09.084
  • Zhang H, Tang H, He YZ, et al. Effect of heat treatment on borides precipitation and mechanical properties of CoCrFeNiAl1.8Cu0.7B0.3Si0.1 high-entropy alloy prepared by arc-melting and laser-cladding. JOM. 2017;69:2078–2083. doi: 10.1007/s11837-017-2381-z
  • Zhang M, Zhou X, Yu X, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Tech. 2017;311:321–329. doi: 10.1016/j.surfcoat.2017.01.012
  • He YZ, Zhang JL, Zhang H, et al. Effects of different levels of boron on microstructure and hardness of CoCrFeNiAlxCu0.7Si0.1By high-entropy alloy coatings by laser cladding. Coatings. 2017;7:7(1–7).
  • Huang C, Zhang Y, Vilar R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater Design. 2012;41:338–343. doi: 10.1016/j.matdes.2012.04.049
  • Zhang H, Pan Y, He Y. Effects of annealing on the microstructure and properties of 6FeNiCoCrAlTiSi high-entropy alloy coating prepared by laser cladding. J Therm Spray Tech. 2011;20:1049–1055. doi: 10.1007/s11666-011-9626-0
  • Zhang H, Pan Y, He Y-Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater Design. 2011;32:1910–1915. doi: 10.1016/j.matdes.2010.12.001
  • Wu W, Jiang L, Jiang H, et al. Phase evolution and properties of Al2CrFeNiMox high-entropy alloys coatings by laser cladding. J Therm Spray Tech. 2015;24:1333–1340. doi: 10.1007/s11666-015-0303-6
  • Zhang C, Chen GJ, Dai PQ. Evolution of the microstructure and properties of laser-clad FeCrNiCoBx high-entropy alloy coatings. Mater Sci Tech. 2016;32:1666–1672. doi: 10.1080/02670836.2015.1138035
  • Chen GJ, Zhang C, Tang QH, et al. Effect of boron addition on the microstructure and wear resistance of FeCoCrNiBx (x = 0.5, 0.75, 1.0, 1.25) high-entropy alloy coating prepared by laser cladding. Rare Metal Mat Eng. 2015;44:1418–1422.
  • Zhang H, Pan Y, He YZ. Laser cladding FeCoNiCrAl2Si high-entropy alloy coating. Acta Metall Sin. 2011;47:1075–1079.
  • Lin DY, Zhang NN, He B, et al. Tribological properties of FeCoCrNiAlBx high-entropy alloys coating prepared by laser cladding. J Iron Steel Res Int. 2017;24:184–189. doi: 10.1016/S1006-706X(17)30026-2
  • Li X, Zheng Z, Dou D, et al. Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering. Mater Res. 2016;19:802–806. doi: 10.1590/1980-5373-MR-2015-0536
  • Feng X, Tang G, Gu L, et al. Preparation and characterization of TaNbTiW multi-element alloy films. Appl Surf Sci. 2012;261:447–453. doi: 10.1016/j.apsusc.2012.08.030
  • Chen TK, Shun TT, Yeh JW, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Tech. 2004;188-189:193–200. doi: 10.1016/j.surfcoat.2004.08.023
  • Cheng K-H, Weng C-H, Lai C-H, et al. Study on adhesion and wear resistance of multi-element (AlCrTaTiZr)N coatings. Thin Solid Films. 2009;517:4989–4993. doi: 10.1016/j.tsf.2009.03.139
  • Hsieh M-H, Tsai M-H, Shen W-J, et al. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surf Coat Tech. 2013;221:118–123. doi: 10.1016/j.surfcoat.2013.01.036
  • Lai C-H, Cheng K-H, Lin S-J, et al. Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings. Surf Coat Tech. 2008;202:3732–3738. doi: 10.1016/j.surfcoat.2008.01.014
  • Lai C-H, Lin S-J, Yeh J-W, et al. Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. J Phys D. 2006;39:4628–4633. doi: 10.1088/0022-3727/39/21/019
  • Lai C-H, Tsai M-H, Lin S-J, et al. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surf Coat Tech. 2007;201:6993–6998. doi: 10.1016/j.surfcoat.2007.01.001
  • Huang P-K, Yeh J-W. Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings. Thin Solid Films. 2009;518:180–184. doi: 10.1016/j.tsf.2009.06.020
  • Huang P-K, Yeh J-W. Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings. Scripta Mater. 2010;62:105–108. doi: 10.1016/j.scriptamat.2009.09.015
  • Braic V, Vladescu A, Balaceanu M, et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Tech. 2012;211:117–121. doi: 10.1016/j.surfcoat.2011.09.033
  • Firstov SA, Gorban VF, Danilenko NI, et al. Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy. Powder Metall Met Ceram. 2014;52:560–566. doi: 10.1007/s11106-014-9560-z
  • Lin S-Y, Chang S-Y, Chang C-J, et al. Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr)NxSiy high-entropy coatings. Entropy . 2014;16:405–417. doi: 10.3390/e16010405
  • Zhang S, Wu CL, Yi JZ, et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying. Surf Coat Tech. 2015;262:64–69. doi: 10.1016/j.surfcoat.2014.12.013
  • Shi Y, Yang B, Xie X, et al. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros Sci. 2017;119:33–45. doi: 10.1016/j.corsci.2017.02.019
  • Dou D, Li XC, Zheng ZY, et al. Coatings of FeAlCoCuNiV high entropy alloy. Surf Eng. 2016;32:766–770. doi: 10.1080/02670844.2016.1148380
  • Cai ZB, Cui XF, Jin G, et al. Microstructure and thermal stability of a Ni-Cr-Co-Ti-V-Al high-entropy alloy coating by laser surface alloying. Met Mater-Int. 2017;23:1012–1018. doi: 10.1007/s12540-017-6583-2
  • Shen WJ, Tsai MH, Tsai KY, et al. Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride. J Electrochem Soc. 2013;160:C531–C535. doi: 10.1149/2.028311jes
  • Tsai DC, Deng MJ, Chang ZC, et al. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering. J Alloys Compd. 2015;647:179–188. doi: 10.1016/j.jallcom.2015.06.025
  • Lin R-C, Lee T-K, Wu D-H, et al. A study of thin film resistors prepared using Ni-Cr-Si-Al-Ta high entropy alloy. Adv Mater Sci Eng. 2015;2015:1–7.
  • Yu R-S, Huang R-H, Lee C-M, et al. Synthesis and characterization of multi-element oxynitride semiconductor film prepared by reactive sputtering deposition. Appl Surf Sci. 2012;263:58–61. doi: 10.1016/j.apsusc.2012.08.109
  • Chang SY, Chen DS. 10-nm-thick quinary (AlCrTaTiZr)N film as effective diffusion barrier for Cu interconnects at 900°C. Appl Phys Lett. 2009;94:231909. doi: 10.1063/1.3155196
  • Chang SY, Chen DS. (Alcrtatizr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900°C. Mater Chem Phys. 2011;125:5–8. doi: 10.1016/j.matchemphys.2010.09.016
  • Chang SY, Li CE, Huang YC, et al. Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Sci Rep. 2015;4:4162(1–8).
  • Chang SY, Huang YC, Li CE, et al. Improved diffusion-resistant ability of multicomponent nitrides: from unitary TiN to senary high-entropy (TiTaCrZrAlRu)N. JOM. 2013;65:1790–1796. doi: 10.1007/s11837-013-0676-2
  • Chang SY, Wang CY, Chen MK, et al. Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers. J Alloys Compd. 2011;509:L85–L89. doi: 10.1016/j.jallcom.2010.11.124
  • Braic V, Balaceanu M, Braic M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J Mech Behav Biomed Mater. 2012;10:197–205. doi: 10.1016/j.jmbbm.2012.02.020
  • Vladescu A, Titorencu I, Dekhtyar Y, et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. Plos One. 2016;11:e0161151. doi: 10.1371/journal.pone.0161151
  • Navinsek B, Panjan P, Cvelbar A. Characterization of low temperature CrN and TiN (PVD) hard coatings. Surf Coat Tech. 1995;74-75:155–161. doi: 10.1016/0257-8972(95)08214-X
  • Panjan P, Bončina I, Bevk J, et al. PVD hard coatings applied for the wear protection of drawing dies. Surf Coat Tech. 2005;200:133–136. doi: 10.1016/j.surfcoat.2005.03.010
  • Wang L, Zhang G, Wood RJK, et al. Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application. Surf Coat Tech. 2010;204:3517–3524. doi: 10.1016/j.surfcoat.2010.04.014
  • Li W, Liu P, Zhao S, et al. Microstructural evolution, mechanical properties and strengthening mechanism of TiN/Ni nanocomposite film. J Alloy Compd. 2017;691:159–164. doi: 10.1016/j.jallcom.2016.08.147
  • Baker MA, Kench PJ, Tsotsos C, et al. Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings. J Vac Sci Tech A. 2005;23:423–433. doi: 10.1116/1.1875212
  • Musil J, Poláková H. Hard nanocomposite Zr–Y–N coatings, correlation between hardness and structure. Surf Coat Tech. 2000;127:99–106. doi: 10.1016/S0257-8972(00)00560-0
  • Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear. 2000;246:1–11. doi: 10.1016/S0043-1648(00)00488-9
  • Lin YC, Cho YH. Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis. Surf Coat Tech. 2008;202:4666–4672. doi: 10.1016/j.surfcoat.2008.03.033
  • Al-Fozan SA, Malik AU. Effect of seawater level on corrosion behavior of different alloys. Desalination. 2008;228:61–67. doi: 10.1016/j.desal.2007.08.007
  • Delgado-Alvarado C, Sundaram PA. A study of the corrosion behavior of gamma titanium aluminide in 3.5 wt% NaCl solution and seawater. Corros Sci. 2007;49:3732–3741. doi: 10.1016/j.corsci.2007.04.001
  • Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in seawater. Mater Design. 2008;29:801–805. doi: 10.1016/j.matdes.2007.01.021
  • Kwok CT, Cheng FT, Man HC. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution. Mat Sci Eng A. 2000;290:145–154. doi: 10.1016/S0921-5093(00)00899-6
  • Peng X, Zhang Y, Zhao J, et al. Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles. Electrochim Acta. 2006;51:4922–4927. doi: 10.1016/j.electacta.2006.01.035
  • Sarkar PP, Kumar P, Manna MK, et al. Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5% NaCl solution. Mater Lett. 2005;59:2488–2491. doi: 10.1016/j.matlet.2005.03.030
  • Wang YQ, Li N, Yang B. Effect of ferrite on pitting corrosion of Fe20Cr9Ni cast austenite stainless steel for nuclear power plant pipe. Corros Eng Sci Tech. 2015;50:330–337. doi: 10.1179/1743278214Y.0000000229
  • Ma Y, Feng YH, Debela TT, et al. Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures. Int J Refract Met H. 2016;54:395–400. doi: 10.1016/j.ijrmhm.2015.08.010
  • Cheng YH, Browne T, Heckerman B, et al. Mechanical and tribological properties of nanocomposite TiSiN coatings. Surf Coat Tech. 2010;204:2123–2129. doi: 10.1016/j.surfcoat.2009.11.034
  • Li W, Liu P, Zhao Y, et al. New understanding of hardening mechanism of TiN/SiNx-based nanocomposite films. Nanoscale Res Lett. 2013;8:427(1–7).
  • Benkahoul M, Sandu CS, Tabet N, et al. Effect of Si incorporation on the properties of niobium nitride films deposited by DC reactive magnetron sputtering. Surf Coat Tech. 2004;188-189:435–439. doi: 10.1016/j.surfcoat.2004.08.048
  • Qiu Y, Zhang S, Lee J-W, et al. Towards hard yet self-lubricious CrAlSiN coatings. J Alloy Compd. 2015;618:132–138. doi: 10.1016/j.jallcom.2014.08.132
  • Ma Q, Li L, Xu Y, et al. Effect of bias voltage on TiAlSiN nanocomposite coatings deposited by HiPIMS. Appl Surf Sci. 2017;392:826–833. doi: 10.1016/j.apsusc.2016.09.028
  • Ma SL, Ma DY, Guo Y, et al. Synthesis and characterization of super hard, self-lubricating Ti–Si–C–N nanocomposite coatings. Acta Mater. 2007;55:6350–6355. doi: 10.1016/j.actamat.2007.07.046
  • Andrievski RA. Nanostructured superhard films as typical nanomaterials. Surf Coat Tech. 2007;201:6112–6116. doi: 10.1016/j.surfcoat.2006.08.119
  • Veprek S. Recent search for new superhard materials: go nano! J Vac Sci Tech A. 2013;31:050822. doi: 10.1116/1.4818590
  • Veprek S, Veprek-Heijman MGJ, Karvankova P, et al. Different approaches to superhard coatings and nanocomposites. Thin Solid Films. 2005;476:1–29. doi: 10.1016/j.tsf.2004.10.053
  • Chung CK, Chang HC, Chang SC, et al. Evolution of enhanced crystallinity and mechanical property of nanocomposite Ti–Si–N thin films using magnetron reactive co-sputtering. J Alloy Compd. 2012;537:318–322. doi: 10.1016/j.jallcom.2012.05.018
  • Procházka J, Karvánková P, Vepřek-Heijman MGJ, et al. Conditions required for achieving superhardness of ≥45 GPa in nc-TiN/a-Si3N4 nanocomposites. Mat Sci Eng A. 2004;384:102–116. doi: 10.1016/j.msea.2004.05.046
  • Veprek S, Niederhofer A, Moto K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV = 80 to ≥105 GPa. Surf Coat Tech. 2000;133-134:152–159. doi: 10.1016/S0257-8972(00)00957-9
  • Tsai D-C, Chang Z-C, Kuo B-H, et al. Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering. J Alloy Compd. 2014;616:646–651. doi: 10.1016/j.jallcom.2014.07.095
  • Cheng K-H, Tsai C-W, Lin S-J, et al. Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)–Six–N coatings by reactive RF magnetron sputtering. J Phys D. 2011;44:205405. doi: 10.1088/0022-3727/44/20/205405
  • Anand G, Goodall R, Freeman CL. Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys. Scripta Mater. 2016;124:90–94. doi: 10.1016/j.scriptamat.2016.07.001
  • Ma D, Yao M, Pradeep KG, et al. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 2015;98:288–296. doi: 10.1016/j.actamat.2015.07.030
  • Zhang C, Zhang F, Diao H, et al. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Mater Design. 2016;109:425–433. doi: 10.1016/j.matdes.2016.07.073
  • King DJM, Burr PA, Obbard EG, et al. DFT study of the hexagonal high-entropy alloy fission product system. J Nucl Mater. 2017;488:70–74. doi: 10.1016/j.jnucmat.2017.02.042
  • Tian F, Wang D, Shen J, et al. An ab initio investgation of ideal tensile and shear strength of TiVNbMo high-entropy alloy. Mater Lett. 2016;166:271–275. doi: 10.1016/j.matlet.2015.12.064
  • Zuo T, Gao MC, Ouyang L, et al. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 2017;130:10–18. doi: 10.1016/j.actamat.2017.03.013
  • Huhn WP, Widom M. Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W. JOM. 2013;65:1772–1779. doi: 10.1007/s11837-013-0772-3
  • Xie L, Brault P, Thomann A-L, et al. Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics. 2016;68:78–86. doi: 10.1016/j.intermet.2015.09.008
  • Xie L, Brault P, Bauchire J-M, et al. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J Phys D. 2014;47:224004. doi: 10.1088/0022-3727/47/22/224004
  • Xie L, Brault P, Thomann A-L, et al. Alcocrcufeni high entropy alloy cluster growth and annealing on silicon: a classical molecular dynamics simulation study. Appl Surf Sci. 2013;285:810–816. doi: 10.1016/j.apsusc.2013.08.133