14,198
Views
144
CrossRef citations to date
0
Altmetric
Reports

Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques

ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all
Pages 268-275 | Received 30 Oct 2017, Published online: 07 Mar 2018

References

  • Higashiwaki M, Sasaki K, Kuramata A, et al. Development of gallium oxide power devices. Phys Status Solidi A. 2014;211(1):21–26. doi: 10.1002/pssa.201330197
  • Oshima T, Okuno T, Arai N, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-GaO substrates. Appl Phys Express. 2008;1(1):011202. doi: 10.1143/APEX.1.011202
  • Tamura Corporation. Single-crystal gallium oxide substrates; 2017 [cited 2017 Aug 28]. Available from: http://www.tamura-ss.co.jp/en/products/gao/index.html.
  • Roy R, Hill VG, Osborn EF. Polymorphism of GaO and the system GaO-HO. J. Am. Chem. Soc.. 1952;74(3):719–722. doi: 10.1021/ja01123a039
  • Playford HY, Hannon AC, Barney ER, et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chem Eur J. 2013;19(8):2803–2813. doi: 10.1002/chem.201203359
  • Lee SD, Ito Y, Kaneko K, et al. Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping. Jpn J Appl Phys. 2015;54(3):030301.
  • Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmitting β-GaO single crystals. Appl Phys Lett. 1997;70:3561–3563. doi: 10.1063/1.119233
  • Víllora EG, Shimamura K, Yoshikawa Y, et al. Large-size β-GaO single crystals and wafers. J Cryst Growth. 2004;270(3):420–426. doi: 10.1016/j.jcrysgro.2004.06.027
  • Suzuki N, Ohira S, Tanaka M, et al. Fabrication and characterization of transparent conductive Sn-doped β-GaO single crystal. Phys Status Solidi C. 2007;4(7):2310–2313. doi: 10.1002/pssc.200674884
  • Víllora EG, Shimamura K, Yoshikawa Y, et al. Electrical conductivity and carrier concentration control in β-GaO by Si doping. Appl Phys Lett. 2008;92:202120.
  • Aida H, Nishiguchi K, Takeda H, et al. Growth of β-GaO single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys. 2008;47(11R):8506. doi: 10.1143/JJAP.47.8506
  • Tomm Y, Ko J, Yoshikawa A, et al. Floating zone growth of β-GaO: a new window material for optoelectronic device applications. Sol Energy Mater Sol Cells. 2001;66(1):369–374. doi: 10.1016/S0927-0248(00)00196-3
  • Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β-GaO single crystals. Cryst Res Technol. 2010;45(12):1229–1236. doi: 10.1002/crat.201000341
  • Kim HW, Kim NH. Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method. Mater Sci Eng B. 2004;110(1):34–37. doi: 10.1016/j.mseb.2004.01.012
  • Víllora EG, Shimamura K, Kitamura K, et al. Epitaxial relationship between wurtzite GaN and β-GaO. Appl Phys Lett. 2007;90(23):234102. doi: 10.1063/1.2745645
  • Oshima T, Okuno T, Fujita S. GaO thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys. 2007;46(11):7217–7220. doi: 10.1143/JJAP.46.7217
  • Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (GaO) metal-semiconductor field-effect transistors on single-crystal β-GaO (010) substrates. Appl Phys Lett. 2012;100(1):013504. doi: 10.1063/1.3674287
  • Higashiwaki M, Sasaki K, Kamimura T, et al. Depletion-mode GaO metal-oxide-semiconductor field-effect transistors on β-GaO (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett. 2013;103(12):123511. doi: 10.1063/1.4821858
  • Sasaki K, Higashiwaki M, Kuramata A, et al. MBE grown β-GaO and its power device applications. J Cryst Growth. 2013;378:591–595. doi: 10.1016/j.jcrysgro.2013.02.015
  • Orita M, Hiramatsu H, Ohta H, et al. Preparation of highly conductive, deep ultraviolet transparent β-GaO thin film at low deposition temperatures. Thin Solid Films. 2002;411(1):134–139. doi: 10.1016/S0040-6090(02)00202-X
  • Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-GaO layers by halide vapor phase epitaxy. Appl Phys Express. 2014;8(1):015503.
  • Oshima Y, Víllora EG, Shimamura K. Quasi-heteroepitaxial growth of β-GaO on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth. 2015;410:53–58. doi: 10.1016/j.jcrysgro.2014.10.038
  • Stepanov S, Nicolaev V, Bougrov V, et al. Gallium oxide: properties and applications – a review. Rev Adv Mater Sci. 2016;44:63–86.
  • Åhman J, Svensson G, Albertsson J. A reinvestigation of β-gallium oxide. Acta Crystallogr C. 1996;52(6):1336–1338. doi: 10.1107/S0108270195016404
  • Schewski R, Wagner G, Baldini M, et al. Epitaxial stabilization of pseudomorphic α-GaO on sapphire (0001). Appl Phys Express. 2014;8(1):011101.
  • Akazawa H. Formation of various phases of gallium oxide films depending on substrate planes and deposition gases. Vacuum. 2016;123:8–16. doi: 10.1016/j.vacuum.2015.10.009
  • Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-GaO thin films on α-AlO substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys. 2008;47(9R):7311. doi: 10.1143/JJAP.47.7311
  • Oshima Y, Víllora EG, Shimamura K. Halide vapor phase epitaxy of twin-free α-GaO on sapphire (0001) substrates. Appl Phys Express. 2015;8(5):055501. doi: 10.7567/APEX.8.055501
  • Mezzadri F, Calestani G, Boschi F, et al. Crystal structure and ferroelectric properties of ϵ-GaO films grown on (0001)-sapphire. Inorg Chem. 2016;55(22):12079–12084. doi: 10.1021/acs.inorgchem.6b02244
  • Boschi F, Bosi M, Berzina T, et al. Hetero-epitaxy of ϵ-GaO layers by MOCVD and ALD. J Cryst Growth. 2016;443:25–30. doi: 10.1016/j.jcrysgro.2016.03.013
  • Oshima Y, Víllora EG, Matsushita Y, et al. Epitaxial growth of phase-pure ϵ-GaO by halide vapor phase epitaxy. J Appl Phys. 2015;118(8):085301. doi: 10.1063/1.4929417
  • Nishinaka H, Tahara D, Yoshimoto M. Heteroepitaxial growth of ϵ-GaO thin films on cubic (111) MgO and (111) yttria-stablized zirconia substrates by mist chemical vapor deposition. Jpn J Appl Phys. 2016;55(12):1202BC. doi: 10.7567/JJAP.55.1202BC
  • Sbrockey NM, Salagaj T, Coleman E, et al. Large-area MOCVD growth of GaO in a rotating disc reactor. J Electron Mater. 2015;44(5):1357–1360. doi: 10.1007/s11664-014-3566-7
  • Yao Y, Lyle LAM, Rokholt JA, et al. Growth and characterization of α-, β-, and ϵ-GaO epitaxial layers on sapphire. ECS Trans. 2017;80(7):191–196. doi: 10.1149/08007.0191ecst
  • Fornari R, Pavesi M, Montedoro V, et al. Thermal stability of ϵ-GaO polymorph. Acta Mater. 2017;140:411–416. doi: 10.1016/j.actamat.2017.08.062