3,599
Views
158
CrossRef citations to date
0
Altmetric
Original Report

Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.20.1)TiO3 ergodic relaxor ceramics

ORCID Icon, , , &
Pages 345-352 | Received 03 Dec 2017, Published online: 01 Apr 2018

References

  • Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009;92:1153–1177. doi: 10.1111/j.1551-2916.2009.03061.x
  • Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram. 2007;19:113–126. doi: 10.1007/s10832-007-9047-0
  • Zhang ST, Kounga AB, Aulbach E, et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett. 2007;91:112906. doi: 10.1063/1.2783200
  • Gao F, Dong XL, Mao CL, et al. Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5 NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc. 2011;94:4382–4386. doi: 10.1111/j.1551-2916.2011.04731.x
  • Li F, Zhai JW, Shen B, et al. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J Appl Phys. 2017;121:054103. doi: 10.1063/1.4975409
  • Xu Q, Lanagan MT, Huang XC, et al. Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage. Ceram Int. 2016;42:9728–9736. doi: 10.1016/j.ceramint.2016.03.062
  • Cao WP, Li WL, Zhang TD, et al. High-energy storage density and efficiency of (1-x)[0.94NBT-0.06BT]-xST lead-free ceramics. Energy Technol. 2015;3:1198–1204. doi: 10.1002/ente.201500173
  • Pu YP, Yao MT, Zhang L, et al. High energy storage density of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.9-xZr0.1SnxO3 ceramics. J Alloys Compd. 2016;687:689–695. doi: 10.1016/j.jallcom.2016.06.181
  • Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3. J Appl Phys. 2011;110:074106. doi: 10.1063/1.3645054
  • Dittmer R, Jo W, Damjanovic D, et al. Lead-free high-temperature dielectrics with wide operational range. J Appl Phys. 2011;109:034107. doi: 10.1063/1.3544481
  • Cao WP, Li WL, Feng Y, et al. Defect dipole induced large recoverable strain and high energy-storage density in lead free Na0.5Bi0.5TiO3-based systems. Appl Phys Lett. 2016;108:202902. doi: 10.1063/1.4950974
  • Zhou MX, Liang RH, Zhou ZY, et al. High energy storage properties of (Ni1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Mater Res Bull. 2018;98:166–172. doi: 10.1016/j.materresbull.2017.10.005
  • Yang HB, Yan F, Lin Y, et al. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Sci Rep. 2017;7:8726. doi: 10.1038/s41598-017-06966-7
  • Zhang HW, Chen C, Deng H, et al. Ultrahigh ferroelectric response in Fe modified 0.95(Na1/2Bi1/2)TiO3-0.05BaTiO3 single crystals. J Mater Chem C. 2014;2:10124–10128. doi: 10.1039/C4TC01814A
  • Sapper E, Dittmer R, Damjanovic D, et al. Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 piezoelectric ceramics. J Appl Phys. 2014;116:104102. doi: 10.1063/1.4894630
  • Wang GY, Huang XY, Jiang PK. Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires. ACS Appl Mater Interfaces. 2015;7:18017–18027. doi: 10.1021/acsami.5b06480
  • Xue SX, Liu SH, Zhang WQ, et al. Dielectric properties and charge-discharge behaviors in niobate glass ceramics for energy-storage applications. J Alloys Compd. 2014;617:418–422. doi: 10.1016/j.jallcom.2014.08.006
  • Yang J, Meng XJ, Shen MR, et al. Effects of Mn doping on dielectric and ferroelectric properties of (Pb,Sr)TiO3 films on (111) Pt/Ti/SiO2/Si substrates. J Appl Phys. 2009;106:094108. doi: 10.1063/1.3257168
  • Cross LE. Relaxor ferroelectrics: an overview. Ferroelectrics. 1994;151:305–320. doi: 10.1080/00150199408244755
  • Xu Q, Li TM, Hao H, et al. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J Eur Ceram Soc. 2015;35:545–553. doi: 10.1016/j.jeurceramsoc.2014.09.003
  • Barick BK, Choudhary RNP, Pradhan DK. Dielectric and impedance spectroscopy of zirconium modified (Na0.5Bi0.5)TiO3 ceramics. Ceram Int. 2013;39:5695–5704. doi: 10.1016/j.ceramint.2012.12.087
  • Chen PY, Chou CC, Tseng TY, et al. Correlation of microstructures and conductivities of ferroelectric ceramics using complex impedance spectroscopy. Jpn J Appl Phys. 2010;49:061505. doi: 10.1143/JJAP.49.061505
  • Steinsvik S, Bugge R, Gjonnes J, et al. The defect structure of SrTi1−xFexO3−y (x = 0–0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J Phys Chem Solids. 1997;58:969–976. doi: 10.1016/S0022-3697(96)00200-4
  • Bai WF, Zheng P, Wen F, et al. Lead-free BNT-based composite materials: enhanced depolarization temperature and electromechanical behavior. Dalton Trans. 2017;46:15340–15353. doi: 10.1039/C7DT02846F
  • Zhang L, Hao H, Zhang SJ, et al. Defect structure-electrical property relationship in Mn-doped calcium strontium titanate dielectric ceramics. J Am Ceram Soc. 2017;100:4638–4648. doi: 10.1111/jace.14994
  • Li M, Pietrowski MJ, De Souza RA, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nature Mater 2014;13:31–35. doi: 10.1038/nmat3782
  • Zang JD, Li M, Sinclair DC, et al. Impedance spectroscopy of (Bi1/2Na1/2)TiO3-BaTiO3 based high-temperature dielectrics. J Am Ceram Soc. 2014;97:2825–2831. doi: 10.1111/jace.13012
  • Zang JD, Li M, Sinclair DC, et al. Impedance spectroscopy of (Bi1/2Na1/2)TiO3-BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J Am Ceram Soc. 2014;97:1523–1529. doi: 10.1111/jace.12804
  • Zhang HW, Deng H, Chen C, et al. Chemical nature of giant strain in Mn-doped 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 lead-free ferroelectric single crystals. Scr Mater. 2014;75:50–53. doi: 10.1016/j.scriptamat.2013.11.017
  • Aksel E, Jakes P, Erdem E, et al. Processing of manganese-doped [Bi0.5Na0.5]TiO3 ferroelectrics: reduction and oxidation reactions during calcination and sintering. J Am Ceram Soc. 2011;94:1363–1367. doi: 10.1111/j.1551-2916.2010.04249.x
  • Wang XF, Liang PF, Chao XL. Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J Am Ceram Soc. 2015;98:1506–1514. doi: 10.1111/jace.13481
  • Viola G, Ning H, Wei XJ, et al. Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J Appl Phys. 2013;114:014107. doi: 10.1063/1.4812383
  • Jin L, Li F, Zhang SJ, Green DJ. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc. 2014;97:1–27. doi: 10.1111/jace.12773