2,020
Views
20
CrossRef citations to date
0
Altmetric
Original Report

Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron

, , , &
Pages 372-377 | Received 13 Jan 2018, Published online: 11 Apr 2018

References

  • Boutard J-L, Alamo A, Lindau R, et al. Fissile core and Tritium-Breeding Blanket: structural materials and their requirements. C R Phys. 2008;9(3–4):287–302. doi: 10.1016/j.crhy.2007.11.004
  • Gilbert MR, Dudarev SL, Zheng S, et al. An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation. Nucl Fusion. 2012;52(8):083019. doi: 10.1088/0029-5515/52/8/083019
  • Schuler T, Barouh C, Nastar M, et al. Equilibrium vacancy concentration driven by undetectable impurities. Phys Rev Lett. 2015;115:015501. doi: 10.1103/PhysRevLett.115.015501
  • Barouh C, Schuler T, Fu C-C, et al. Predicting vacancy-mediated diffusion of interstitial solutes in α-Fe. Phys Rev B. 2015;92:104102. doi: 10.1103/PhysRevB.92.104102
  • Schäublin R, Henry J, Dai Y. Helium and point defect accumulation:(i) microstructure and mechanical behaviour. CR Phys. 2008;9(3–4):389–400. doi: 10.1016/j.crhy.2008.01.003
  • Trinkaus H, Singh BN. Helium accumulation in metals during irradiation–where do we stand? J Nucl Mater. 2003;323(2–3):229–242. doi: 10.1016/j.jnucmat.2003.09.001
  • Dai Y, Odette GR, Yamamoto T. The effects of helium in irradiated structural alloys. In: Konings RJM, Allen TR, Stoller RE, Yamanaka S, editors. Comprehensive nuclear materials. Oxford: Elsevier; 2012. p. 141–193.
  • Fu C-C, Willaime F. Ab initio study of helium in α−Fe: dissolution, migration, and clustering with vacancies. Phys Rev B. 2005;72:064117. doi: 10.1103/PhysRevB.72.064117
  • Ishizaki T, Xu Q, Yoshiie T, et al. The effect of hydrogen and helium on microvoid formation in iron and nickel. J Nucl Mater. 2002;307–311:961–965. doi: 10.1016/S0022-3115(02)01279-5
  • Brimbal D, Meslin E, Henry J, et al. He and Cr effects on radiation damage formation in ion-irradiated pure iron and Fe–5.40 wt.% Cr: A transmission electron microscopy study. Acta Mater. 2014;61(13):4757–4764. doi: 10.1016/j.actamat.2013.04.070
  • Kuramoto E, Yoshida N, Tsukuda N, et al. Simulation irradiation studies on iron. J Nucl Mater. 1981;104:1091–1095. doi: 10.1016/0022-3115(82)90746-2
  • Getto E, Jiao Z, Monterrosa AM, et al. Effect of pre-implanted helium on void swelling evolution in self-ion irradiated HT9. J Nucl, Mater. 2015;462:458–469. doi: 10.1016/j.jnucmat.2015.01.045
  • Xu Q, Yoshiie T, Sato K. Effects of hydrogen and helium produced by transmutation reactions on void formation in copper isotopic alloys irradiated with neutrons. J Nucl. Mater. 2009;386–388:363–366. doi: 10.1016/j.jnucmat.2008.12.127
  • Tanaka T, Oka K, Ohnuki S, et al. Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe-Cr ferritic alloys. J Nucl. Mater. 2004;329–333:294–298. doi: 10.1016/j.jnucmat.2004.04.051
  • Kenik EA. The influence of helium on microstructural evolution of stainless steel. J Nucl Mater. 1979;85–86:659–663. doi: 10.1016/0022-3115(79)90335-0
  • Kupriiyanova YE, Bryk VV, Borodin OV, et al. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels. J Nucl Mater. 2016;468:264–273. doi: 10.1016/j.jnucmat.2015.07.012
  • McLaurin SK, Kulcinski GL, Dodd RA. Effects of temperature and helium on void formation in self-ion irradiated aluminum. J Nucl Mater. 1983;117:208–212. doi: 10.1016/0022-3115(83)90025-9
  • Yutani K, Kishimoto H, Kasada R, et al. Evaluation of helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation. J Nucl Mater. 2007;367–370:423–427. doi: 10.1016/j.jnucmat.2007.03.016
  • Packan NH, Farrell K. Simulation of first wall damage: effects of the method of gas implantation. J Nucl Mater. 1979;85–86 Part 2:677–681. doi: 10.1016/0022-3115(79)90338-6
  • Delaplace J, Azam N, LeNaour L. Gonflement du nickel irradie par des ions Ni+ de moyenne energie [Swelling of nickel irradiated by medium energy Ni+ ions]. J. Nucl, Mater. 1973;47:278–294. French. doi: 10.1016/0022-3115(73)90084-6
  • Kimoto T, Lee EH, Mansur LK. Effects of helium injection mode on void formation in Fe-Ni-Cr alloys. J Nucl Mater. 1988;158:166–178. doi: 10.1016/0022-3115(88)90166-3
  • Jenkins ML, Kirk MA. Characterization of radiation damage by transmission electron microscopy. Bristol: IOP Publishing Ltd; 2001.
  • Egerton R. Electron energy-loss spectroscopy in the electron microscope. 3rd ed. New York (NY): Springer; 2011.
  • Farrell K, Packan NH. A helium-induced shift in the temperature dependence of swelling. J Nucl Mater. 1979;85–86 Part 2:683–687. doi: 10.1016/0022-3115(79)90339-8
  • Mansur LK, Lee EH. Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys. J Nucl Mater. 1991;179–181 Part 1:105–110. doi: 10.1016/0022-3115(91)90023-Z
  • Ventelon L, Wirth BD, Domain C. Helium–self-interstitial atom interaction in α-iron. J Nucl Mater. 2006;351(1–3):119–132. doi: 10.1016/j.jnucmat.2006.02.029
  • Katoh Y, Kohno Y, Kohyama A. Dual-ion irradiation effects on microstructure of austenitic alloys. J Nucl Mater. 1993;205:354–360. doi: 10.1016/0022-3115(93)90100-D
  • Stoller RE. The influence of helium on microstructural evolution: implications for DT fusion reactors. J Nucl Mater. 1990;174(2–3):289–310. doi: 10.1016/0022-3115(90)90242-F
  • Zinkle SJ, Snead LL. Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations. Scripta Mater. 2018;143:154–160. doi: 10.1016/j.scriptamat.2017.06.041
  • Garner FA. Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage. J Nucl Mater. 1983;117:177–197. doi: 10.1016/0022-3115(83)90023-5