2,593
Views
30
CrossRef citations to date
0
Altmetric
Original Report

High strength, deformable nanotwinned Al–Co alloys

ORCID Icon, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 33-39 | Received 12 Aug 2018, Published online: 05 Dec 2018

References

  • Hirsch J. Recent development in aluminium for automotive applications. Trans Nonferr Met Soc China. 2014;24(7):1995–2002. doi: 10.1016/S1003-6326(14)63305-7
  • Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–155. doi: 10.1016/j.actamat.2013.09.042
  • Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Arch Civil Mech Eng. 2008;8(2):103–117. doi: 10.1016/S1644-9665(12)60197-6
  • Fine ME. Precipitation hardening of aluminum alloys. Metall Mater Trans A. 1975;6(4):625–630. doi: 10.1007/BF02672283
  • Youssef K, Scattergood R, Murty K, et al. Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scr Mater. 2006;54(2):251–256. doi: 10.1016/j.scriptamat.2005.09.028
  • Liddicoat PV, Liao X-Z, Zhao Y, et al. Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun. 2010;1:1. doi: 10.1038/ncomms1062
  • Hahn EN, Meyers MA. Grain-size dependent mechanical behavior of nanocrystalline metals. Mater Sci Eng A. 2015;646:101–134. doi: 10.1016/j.msea.2015.07.075
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323(5914):607–610. doi: 10.1126/science.1167641
  • Anderoglu O, Misra A, Wang H, et al. Thermal stability of sputtered Cu films with nanoscale growth twins. J Appl Phys. 2008;103(9):094322. doi: 10.1063/1.2913322
  • Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697–702. doi: 10.1038/nmat3646
  • Velasco L, Hodge AM. Growth twins in high stacking fault energy metals: microstructure, texture and twinning. Mater Sci Eng A. 2017;687:93–98. doi: 10.1016/j.msea.2017.01.065
  • Xue S, Fan Z, Lawal OB, et al. High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium. Nat Commun. 2017;8(1):1653. doi: 10.1038/s41467-017-01729-4
  • Zhao F, Wang L, Fan D, et al. Macrodeformation twins in single-crystal Aluminum. Phys. Rev. Lett.. 2016;116(7):075501. doi: 10.1103/PhysRevLett.116.075501
  • Chen M, Ma E, Hemker KJ, et al. Deformation twinning in nanocrystalline aluminum. Science. 2003;300(5623):1275–1277. doi: 10.1126/science.1083727
  • Liao X, Zhou F, Lavernia E, et al. Deformation twins in nanocrystalline Al. Appl Phys Lett. 2003;83(24):5062–5064. doi: 10.1063/1.1633975
  • Xue S, Kuo W, Li Q, et al. Texture-directed twin formation propensity in Al with high stacking fault energy. Acta Mater. 2018;144:226–234. doi: 10.1016/j.actamat.2017.10.053
  • Leyson GPM, Curtin WA, Hector Jr LG, et al. Quantitative prediction of solute strengthening in aluminium alloys. Nat Mater. 2010;9(9):750. doi: 10.1038/nmat2813
  • Li Q, Xue S, Wang J, et al. High-strength nanotwinned Al Alloys with 9R phase. Adv Mater. 2018;30:1704629. doi: 10.1002/adma.201704629
  • Ding J, Li Q, Li J, et al. Mechanical behavior of structurally gradient nickel alloy. Acta Mater. 2018;149:57–67. doi: 10.1016/j.actamat.2018.02.021
  • Ng K, Ngan A. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 2008;56(8):1712–1720. doi: 10.1016/j.actamat.2007.12.016
  • Frick C, Clark B, Orso S, et al. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A. 2008;489(1–2):319–329. doi: 10.1016/j.msea.2007.12.038
  • Kunz A, Pathak S, Greer JR. Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 2011;59(11):4416–4424. doi: 10.1016/j.actamat.2011.03.065
  • Zhang YF, Xue S, Li Q, et al. Microstructure and mechanical behavior of nanotwinned AlTi alloys with 9R phase. Scr Mater. 2018;148:5–9. doi: 10.1016/j.scriptamat.2018.01.010
  • Wang J, Misra A, Hirth J. Shear response of Σ 3 {112} twin boundaries in face-centered-cubic metals. Phys Rev B. 2011;83(6):064106. doi: 10.1103/PhysRevB.83.064106
  • Li B, Sui M, Li B, et al. Reversible twinning in pure aluminum. Phys. Rev. Lett.. 2009;102(20):205504. doi: 10.1103/PhysRevLett.102.205504
  • Yamakov V, Wolf D, Salazar M, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49(14):2713–2722. doi: 10.1016/S1359-6454(01)00167-7
  • Li J, Xie D, Xue S, et al. Superior twin stability and radiation resistance of nanotwinned Ag solid solution alloy. Acta Mater. 2018;151:395–405. doi: 10.1016/j.actamat.2018.03.052
  • Rautioaho R. An interatomic pair potential for aluminium calculation of stacking fault energy. Phys Status Solidi B. 1982;112(1):83–89. doi: 10.1002/pssb.2221120108
  • Wang Z, Qu RT, Scudino S, et al. Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 2015;7(12):e229. doi: 10.1038/am.2015.129
  • Hall E. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B. 1951;64(9):747–753. doi: 10.1088/0370-1301/64/9/303
  • Petch N. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25–28.
  • Cordero Z, Knight B, Schuh C. Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals. Int Mater Rev. 2016;61(8):495–512. doi: 10.1080/09506608.2016.1191808
  • Misra A, Hirth J, Hoagland R. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005;53(18):4817–4824. doi: 10.1016/j.actamat.2005.06.025
  • Hansen N. Hall–Petch relation and boundary strengthening. Scripta Mater. 2004;51(8):801–806. doi: 10.1016/j.scriptamat.2004.06.002
  • Wyrzykowski J, Grabski M. The Hall–Petch relation in aluminium and its dependence on the grain boundary structure. Philos Mag A. 1986;53(4):505–520. doi: 10.1080/01418618608242849
  • Bufford D, Liu Y, Wang J, et al. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries [Article]. Nat Commun. 2014;5. doi:10.1038/ncomms5864.
  • Callister WD. Materials science and engineering: An introduction. Chichester: Wiley; 1985; 602 pp.
  • Yu W, Shen S, Liu Y, et al. Nonhysteretic superelasticity and strain hardening in a copper bicrystal with a∑ 3 {112} twin boundary. Acta Mater. 2017;124:30–36. doi: 10.1016/j.actamat.2016.10.062