2,684
Views
18
CrossRef citations to date
0
Altmetric
Original Report

Deformation induced intermediate metastable lattice structures facilitate ordered B2 nucleation in a fcc-based high entropy alloy

ORCID Icon, , , & ORCID Icon
Pages 40-46 | Received 29 Aug 2018, Published online: 05 Dec 2018

References

  • Arzt E, Grahle P. High temperature creep behavior of oxide dispersion strengthened NiAl intermetallics. Acta Mater. 1998;46:2717–2727. doi: 10.1016/S1359-6454(97)00474-6
  • Kimura Y, Kuriyama H, Suzuki T, et al. Microstructure control and mechanical properties of binary Co–Al alloys based on B2 intermetallic compound CoAl. Mater Trans. 1994;35:182–188. doi: 10.2320/matertrans1989.35.182
  • Ishida K, Kainuma R, Ueno N, et al. Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall Trans A. 1991;22:441–446. doi: 10.1007/BF02656811
  • Inoue A, Masumoto T, Tomioka H. Microstructure and mechanical properties of rapidly quenched L20 and L20+ L12 alloys in Ni-Al-Fe and Ni-Al-Co systems. J Mater Sci. 1984;19:3097–3106. doi: 10.1007/BF01026989
  • Huang SC, Field RD, Krueger DD. Microscopy and tensile behavior of melt-spun Ni-Al-Fe alloys. Metall Trans A. 1990;110(21):959–970. doi: 10.1007/BF02656580
  • Yiping L, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2017;4:6200–6204.
  • Wani IS, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater Res Lett. 2016;4:174–179. doi: 10.1080/21663831.2016.1160451
  • Shivakant S, Wang T, Mishra R, et al. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scripta Mater. 2018;156:105–109. doi: 10.1016/j.scriptamat.2018.07.022
  • Yifeng L, Baker I. Evolution of the microstructure and mechanical properties of eutectic Fe30Ni20Mn35Al15. J Mater Sci. 2011;46:2009–2017. doi: 10.1007/s10853-010-5197-6
  • Gwalani B, Gorsse S, Choudhuri D, et al. Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing. Acta Mater. 2018;153:169–185. doi: 10.1016/j.actamat.2018.05.009
  • Choudhuri D, Shivakant S, Green WB, et al. Crystallographically degenerate B2 precipitation in a plastically deformed fcc-based complex concentrated alloy. Mater Res Lett. 2018;6:171–177. doi: 10.1080/21663831.2018.1426649
  • Choudhuri D, Komarasamy M, Mishra RS, et al. Investigation of plastic deformation modes in Al0.1CoCrFeNi high entropy alloy. Mater Chem Phys. 2018;217:308–314. doi: 10.1016/j.matchemphys.2018.05.050
  • Porter DA, Easterling KE, Sherif M. Phase transformations in metals and alloys. Boca Raton, FL, USA: CRC Press; 2009; Revised Reprint.
  • Bogers AJ, Burgers WG. Partial dislocations on the {110} planes in the BCC lattice and the transition of the FCC into the BCC lattice. Acta Metall. 1964;12:255–261. doi: 10.1016/0001-6160(64)90194-4
  • Olson GB, Cohen M. A general mechanism of martensitic nucleation: Part II. FCC→ BCC and other martensitic transformations. Metall Trans A. 1976;7:1905–1914.
  • Xue Q, Gray GT. Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization. Metall Mater Trans A. 2006;37:2447–2458. doi: 10.1007/BF02586218
  • Choudhuri D, Dendge N. Nag S, et al. Homogeneous and heterogeneous precipitation mechanisms in a binary Mg–Nd alloy. J Mater Sci. 2014;49:6986–7003. doi: 10.1007/s10853-014-8404-z
  • Alexander S. Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Model Simul Mater Sci Eng. 2009;18:015012–015018.