3,904
Views
54
CrossRef citations to date
0
Altmetric
Original Report

Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations

, , , , , , , & show all
Pages 145-151 | Received 11 Aug 2018, Published online: 17 Jan 2019

References

  • Bhalla AS, Guo R, Roy R. The perovskite structure -a review of its role in ceramic science and technology. Mater Res Innovations. 2000;4(1): 3–26. doi: 10.1007/s100190000062
  • Grabowska E. Selected perovskite oxides: characterization, preparation and photocatalytic properties—a review. Appl Catal B. 2016;186:97–126. doi: 10.1016/j.apcatb.2015.12.035
  • Bannikov VV, Shein IR, Kozhevnikov VL, et al. Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3. J Magn Magn Mater. 2008;320(6):936–942. doi: 10.1016/j.jmmm.2007.09.012
  • Kakekhani A, Ismail-Beigi S, Altman EI. Ferroelectrics: a pathway to switchable surface chemistry and catalysis. Surf Sci. 2016;650:302–316. doi: 10.1016/j.susc.2015.10.055
  • Menzler NH, Tietz F, Uhlenbruck S, et al. Materials and manufacturing technologies for solid oxide fuel cells. J Mater Sci. 2010;45(12):3109–3135. doi: 10.1007/s10853-010-4279-9
  • Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15(8):804–809. doi: 10.1038/nmat4687
  • Liu Y, Liu B, Xiang H, et al. Theoretical investigation of anisotropic mechanical and thermal properties of ABO3 (A = Sr, Ba; B = Ti, Zr, Hf) perovskites. J Am Ceram Soc. 2018;101:3527–3540. doi: 10.1111/jace.15502
  • Ma W, Mack DE, Vaßen R, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings. J Am Ceram Soc. 2008;91(8):2630–2635. doi: 10.1111/j.1551-2916.2008.02472.x
  • Ma W, Jarligo MO, Mack DE, et al. New generation perovskite thermal barrier coating materials. J Therm Spray Technol. 2008;17(5-6):831–837. doi: 10.1007/s11666-008-9239-4
  • Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891–898. doi: 10.1557/mrs.2012.232
  • Curtarolo S, Hart GL, Nardelli MB, et al. The high-throughput highway to computational materials design. Nat Mater. 2013;12(3):191–201. doi: 10.1038/nmat3568
  • Emery AA, Saal JE, Kirklin S, et al. High-throughput computational screening of perovskites for thermochemical water splitting applications. Chem Mater. 2016;28(16):5621–5634. doi: 10.1021/acs.chemmater.6b01182
  • Strasser P, Fan Q, Devenney M, et al. High throughput experimental and theoretical predictive screening of materials − a comparative study of search strategies for new fuel cell anode catalysts. J Phys Chem B. 2003;107(40):11013–11021. doi: 10.1021/jp030508z
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169
  • Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008;100(13):136406. doi: 10.1103/PhysRevLett.100.136406
  • Yuk SF, Pitike KC, Nakhmanson SM, et al. Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects. Sci Rep. 2017;7:43482. doi: 10.1038/srep43482
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188
  • Voigt W. Lehrbuch der Kristallphysik. Taubner: Leipzig; 1928.
  • Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristable [Calculation of the flow limit of mixed crystals due to the plasticity condition for single crystals]. J Appl Math Mech. 1929;9(1):49–58. German.
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307
  • Clarke DR. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol. 2003:163–164:67–74. doi: 10.1016/S0257-8972(02)00593-5
  • Liu B, Wang J, Li F, et al. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 2010;58(13):4369–4377. doi: 10.1016/j.actamat.2010.04.031
  • Sun Z, Li M, Zhou Y. Thermal properties of single-phase Y2SiO5. J Eur Ceram Soc. 2009;29(4):551–557. doi: 10.1016/j.jeurceramsoc.2008.07.026
  • Materials Informatics Platform. Available from: http://mip.shu.edu.cn.
  • Bergerhoff G, Brown ID. Crystallographic databases. Vol. 360. Allen FH, editor. Chester: International Union of Crystallography; 1987.
  • Karlsruhe F. NIST. The Inorganic Crystal Structure Database (ICSD).
  • Jong MD, Chen W, Angsten T, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci Data. 2015;2:150009. doi: 10.1038/sdata.2015.9
  • Born M, Huang K. Dynamical theory of crystal lattices. Great Britain: Oxford University Press; 1954.
  • Sun Z, Zhou Y, Wang J, et al. Thermal properties and thermal shock resistance of γ-Y2Si2O7. J Am Ceram Soc. 2008;91(8):2623–2629. doi: 10.1111/j.1551-2916.2008.02470.x
  • Lehmann H, Pitzer D, Pracht G, et al. Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J Am Ceram Soc. 2003;86(8):1338–1344. doi: 10.1111/j.1151-2916.2003.tb03473.x
  • Pugh SF. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1954;45(367):823–843. doi: 10.1080/14786440808520496
  • Gilman JJ. Electronic basis of the strength of materials. Cambridge: Cambridge University Press; 2008.
  • Arunkumar P, Ramaseshan R, Dash S, et al. Texturing of pure and doped CeO2 thin films by EBPVD through target engineering. RSC Adv. 2014;4(63):33338. doi: 10.1039/C4RA04353G
  • Yang G, Mao X, Wang D, et al. Fabrication of columnar structured lanthanum zirconate films by laser CVD. J Am Ceram Soc. 2017;100(9):4232–4239. doi: 10.1111/jace.14923