4,479
Views
40
CrossRef citations to date
0
Altmetric
Original Report

Nano oxides reinforced high-entropy alloy coatings synthesized by atmospheric plasma spraying

, , , , , , & show all
Pages 312-319 | Received 21 Jan 2019, Published online: 22 Apr 2019

References

  • Tsai MH, Yeh JW. High-entropy alloys: A critical review. Mater Res Lett. 2014;2:107–123. doi: 10.1080/21663831.2014.912690
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science. 2018;362:933–937. doi: 10.1126/science.aas8815
  • Lei ZF, Liu XJ, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563:546–550. doi: 10.1038/s41586-018-0685-y
  • Yang T, Zhao YL, Liu WH, et al. Ductilizing brittle high-entropy alloys via tailoring valence electron concentrations of precipitates by controlled elemental partitioning. Mater Res Lett. 2018;6:600–606. doi: 10.1080/21663831.2018.1518276
  • Wu SW, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Mater. 2019;165:444–458. doi: 10.1016/j.actamat.2018.12.012
  • Shi YZ, Collins L, Feng R, et al. Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros Sci. 2018;133:120–131. doi: 10.1016/j.corsci.2018.01.030
  • Joseph J, Haghdadi N, Shamlaye K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear. 2019;428-429:32–44. doi: 10.1016/j.wear.2019.03.002
  • Tang Z, Yuan T, Tsai CW, et al. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 2015;99:247–258. doi: 10.1016/j.actamat.2015.07.004
  • Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat Commun. 2015;6:7748. doi: 10.1038/ncomms8748
  • Yan XH, Li JS, Zhang WR, et al. A brief review of high-entropy films. Mater Chem Phys. 2018;210:12–19. doi: 10.1016/j.matchemphys.2017.07.078
  • Li W, Liu P, Liaw PK. Microstructures and properties of high-entropy alloy films and coatings: a review. Mater Res Lett. 2018;6:199–229. doi: 10.1080/21663831.2018.1434248
  • Qiu XW. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. J Alloys Compd. 2018;735:359–364. doi: 10.1016/j.jallcom.2017.11.158
  • Chen LJ, Bobzin K, Zhou Z, et al. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf Coat Tech. 2019;358:215–222. doi: 10.1016/j.surfcoat.2018.11.052
  • Jin G, Cai ZB, Guan YJ, et al. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl Surf Sci. 2018;445:113–122. doi: 10.1016/j.apsusc.2018.03.135
  • Braeckman BR, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films. 2015;580:71–76. doi: 10.1016/j.tsf.2015.02.070
  • Liao WB, Zhang H, Liu ZY, et al. High strength and deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy Thin Films fabricated by magnetron sputtering. Entropy. 2019;21:146. doi: 10.3390/e21020146
  • Jiang H, Han K, Li D, et al. Synthesis and Characterization of AlCoCrFeNiNbx high-entropy alloy coatings by laser cladding. Crystals (Basel). 2019;9:56. doi: 10.3390/cryst9010056
  • Hsu WL, Yang YC, Chen CY, et al. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics. 2017;89:105–110. doi: 10.1016/j.intermet.2017.05.015
  • Wang B, Huang J, Fan JH, et al. Preparation of FeCoNiCrMn high entropy alloy by electrochemical reduction of solid oxides in molten salt and its corrosion behavior in aqueous solution. J Electrochem Soc. 2017;164:E575–E579. doi: 10.1149/2.1521714jes
  • Yao CZ, Zhang P, Liu M, et al. Electrochemical preparation and magnetic study of BiFeCoNiMn high entropy alloy. Electrochim Acta. 2008;53:8359–8365. doi: 10.1016/j.electacta.2008.06.036
  • Fauchais PL, Heberlein JVR, Boulos ML. Thermal spray fundamentals. New York: Springer Science + Business Media; 2014.
  • Juraj R, Anton P. Plasma and thermal spraying. This springer imprint is published by Springer Nature, the registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland;2017.
  • Hari PS, Cijo M, Jacob K, et al. Comparative study of high entropy alloys AlCoCrFeNi, AlCoFeNi and CoCrFeNi with 304SS. Int J Eng Inno Tech. 2016;6:29–33.
  • Chen QS, Dong Y, Zhang JJ, et al. Microstructure and properties of AlCoCrFeNiBx (x = 0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys. Rare Metal Mater Eng. 2017;46:651–656. doi: 10.1016/S1875-5372(17)30112-1
  • Senkov ON, Senkova SV, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: microstructure and phase analysis. Acta Mater. 2013;61:1545–1557. doi: 10.1016/j.actamat.2012.11.032
  • Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd. 2014;589:143–152. doi: 10.1016/j.jallcom.2013.11.084
  • Ang ASM, Berndt CC, Sesso ML, et al. Plasma-Sprayed high entropy alloys: microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metallurgical and Materials Transactions A. 2014;46:791–800. doi: 10.1007/s11661-014-2644-z
  • Wu JM, Lin SJ, Yeh JW, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear. 2006;261:513–519. doi: 10.1016/j.wear.2005.12.008
  • Hutchings I, Shipway P. Tribology. Oxford: Published by Elsevier Ltd; 2017.
  • Tian LH, Feng ZK, Xiong W. Microstructure, Microhardness, and wear resistance of AlCoCrFeNiTi/Ni60 coating by plasma spraying. Coatings. 2018;8:112. doi: 10.3390/coatings8030112
  • Tian LH, Xiong W, Liu C, et al. Microstructure and wear behavior of atmospheric plasma-Sprayed AlCoCrFeNiTi high-entropy alloy coating. J Mater Eng Perform. 2016;25:5513–5521. doi: 10.1007/s11665-016-2396-6
  • Wang YX, Yang YJ, Yang HJ, et al. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater Chem Phys. 2018;210:233–239. doi: 10.1016/j.matchemphys.2017.05.029
  • Zhou R, Chen G, Liu B, et al. Microstructures and wear behaviour of (FeCoCrNi)1–x(WC)x high entropy alloy composites. Int J Refract Met H. 2018;75:56–62. doi: 10.1016/j.ijrmhm.2018.03.019
  • Koga GY, Wolf W, Schulz R, et al. Corrosion and wear properties of FeCrMnCoSi HVOF coatings. Surf Coat Tech. 2019;357:993–1003. doi: 10.1016/j.surfcoat.2018.10.101
  • Huang C, Zhang YZ, Vilar R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4 V substrate. Mater Design. 2012;41:338–343. doi: 10.1016/j.matdes.2012.04.049
  • Li T, Liu Y, Liu B, et al. Microstructure and wear behavior of FeCoCrNiMo0.2 high entropy coatings prepared by air plasma spray and the high velocity oxy-fuel spray processes. Coatings. 2017;7:151–164. doi: 10.3390/coatings7090151
  • Matikainen V, Bolelli G, Koivuluoto H, et al. Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings. Wear. 2017;388-389:57–71. doi: 10.1016/j.wear.2017.04.001
  • Tian LH, Fu M, Xiong W. Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials (Basel). 2018;11:1–18.
  • Guo Y, Shang X, Liu Q. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings. Surf Coat Tech. 2018;344:353–358. doi: 10.1016/j.surfcoat.2018.03.035
  • Huang CJ, Yan XC, Li WY, et al. Post-spray modification of cold-sprayed Ni-Ti coatings by high-temperature vacuum annealing and friction stir processing. Appl Surf Sci. 2018;451:56–66. doi: 10.1016/j.apsusc.2018.04.257
  • Xiang ZF, Liu XB, Ren J, et al. Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4 V alloy with the addition of self-lubricant CaF2. Appl Surf Sci. 2014;313:243–250. doi: 10.1016/j.apsusc.2014.05.196
  • Zhang C, Liu L, Chan KC, et al. Wear behavior of HVOF-sprayed Fe-based amorphous coatings. Intermetallics. 2012;29:80–85. doi: 10.1016/j.intermet.2012.05.004