5,620
Views
91
CrossRef citations to date
0
Altmetric
Original Report

In-situ observation of dislocation dynamics near heterostructured interfaces

, , , , , , , , , & show all
Pages 376-382 | Received 19 Mar 2019, Published online: 20 May 2019

References

  • Ovid′ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
  • Wang YM, Chen MW, Zhou FH, et al. High tensile ductility in a nanostructured metal. Nature. 2002;419:912–915.
  • Wei YJ, Li YQ, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5:3580.
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62.
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324(5925):349–352.
  • Araki K, Takada Y, Nakaoka K. Work-hardening of continuously annealed dual phase steels. Trans Iron Steel Inst Jpn. 1977;17:710–717.
  • Kundu A, Field DP. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel. Mater Sci Eng A. 2016;667:435–443.
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112:14501–14505.
  • Ma XL, Huang CX, Moering J, et al. Mechanical properties in copper/bronze laminates: role of interfaces. Acta Mater. 2016;116:43–52.
  • Chassagne M, Legros M, Rodney D. Atomic-scale simulation of screw dislocation/coherent twin boundary interaction in Al, Au, Cu and Ni. Acta Mater. 2011;59:1456–1463.
  • Kondo S, Mitsuma T, Shibata N, et al. Direct observation of individual dislocation interaction processes with grain boundaries. Science Adv. 2016;2(11):1501926.
  • Kacher J, Eftink BP, Cui B, et al. Dislocation interactions with grain boundaries. Curr Opin Solid State Mater Sci. 2014;18:227–243.
  • Huang CX, Wang YF, Ma XL, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate. Mater Today. 2018;21(7):713–719.
  • Murr LE. Dislocation ledge sources: dispelling the myth of Frank-Read source importance. Metall Mater Trans A. 2016;47(12):5811–5826.
  • Mompiou F, Legros M, Boé A, et al. Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: an in situ TEM study. Acta Mater. 2013;61:205–216.
  • Wang LW, Han XD, Liu P, et al. In situ observation of dislocation behavior in nanometer grains. Phys Rev Lett. 2010;105:135501.
  • Li JCM. High-angle tilt boundary – a dislocation core model. J Appl Phys. 1961;32(3):525–530.
  • Wang LH, Teng J, Sha XC, et al. Plastic deformation through dislocation saturation in ultrasmall Pt Nanocrystals and its in situ atomicstic mechanisms. Nano Lett. 2017;17(8):4733–4739.
  • Wang LH, Zhang Z, Ma E, et al. Transimission electron microscopy observations of dislocation annihilation and storage in nanograins. Appl Phys Lett. 2011;98(5):051905.
  • Liu P, Mao SC, Wang LH, et al. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr Mater. 2011;64(4):343–346.
  • Han XD, Wang LH, Yue YH, et al. In situ atomic scale mechanical microscopy discovering the atomistic mechnisms of plasiticty in nano-single crystals and grain rotation in polycrystalline metal. Ultramicroscopy. 2015;151:94–100.
  • Zhu YT, Wu XL, Liao XZ, et al. Dislocation-twin interactions in nanocrystalline fcc metals. Acta Mater. 2011;59:812–821.
  • Wu XL, Liao XZ, Srinivasan SG, et al. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys Rev Lett. 2008;100:095701.
  • Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323–331.
  • Wu XL, Zhu YT. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532.
  • Hirth JP, Lothe J. Theory of dislocations. Malabar (FL): Krieger Publishing Company; 1992.
  • Hertzberg RW. Deformation and fracture mechanics of engineering materials. New York: Wiley; 1989.
  • Frank FC, Read WT. Multiplication processes for slow moving dislocations. Phys Rev. 1950;79:722–723.
  • Hull D, Bacon DJ. Introduction to dislocations. Oxford: Pergamon Press; 1984.
  • Yamakov V, Wolf D, Phillpot SR, et al. Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials. Philos Mag Lett. 2003;83:385–393.
  • Yamakov V, Wolf D, Phillpot SR, et al. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nature Mater. 2004;3:43–47.
  • Swygenhoven HV, Weertman JR. Deformation in nanocrystalline metals. Mater Today. 2006;9(5):24–31.
  • Swygenhoven HV, Derlet PM, Froseth AG. Stacking fault energies and slip in nanocrystalline metals. Nature Mater. 2004;3:399–403.
  • Wang LH, Teng J, Liu P, et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun. 2014;5:4402.
  • Wang LH, Xin TJ, Kong DL, et al. In situ observation of stress induced grain boundary migration in nanocrystalline gold. Scr Mater. 2017;134:95–99.
  • Murr LE, Wang SH. Comparison of microstructural evolution associated with the stress-strain diagrams for nickel and 304 stainless steel: an electron microscope study of micro-yielding and plastic-flow. Res Mech. 1982;4:237–274.
  • Gao H, Huang Y, Nix WD, et al. Mechanism-based strain gradient plasticity-I. Theory. J Mech Phys Solids. 1999;47(6):1239–1263.
  • Mompiou F, Caillard D, Lergos M, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminum. Acta Mater. 2016;60:3402–3414.
  • Hong SI, Laird C. Mechanisms of slip mode modification in F. C.C. solid-solutions. Acta Metall Mater. 1990;38(8):1581–1594.
  • Lee TH, Shin E, Oh CS, et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater. 2010;58:3173–3186.
  • Zhu YT, Wu XL. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. In press.