1,280
Views
6
CrossRef citations to date
0
Altmetric
Original Report

Probing the role of Johari–Goldstein relaxation in the plasticity of metallic glasses

, , , , &
Pages 383-391 | Received 21 Dec 2018, Published online: 22 May 2019

References

  • Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977;25:407–415. doi: 10.1016/0001-6160(77)90232-2
  • Argon AS. Plastic deformation in metallic glasses. Acta Metall. 1979;27:47–58. doi: 10.1016/0001-6160(79)90055-5
  • Ketov SV, Sun YH, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature. 2015;524:200. doi: 10.1038/nature14674
  • Wang ZT, Pan J, Li Y, et al. Densification and strain hardening of a metallic glass under tension at room temperature. Phys Rev Lett. 2013;111:135504. doi: 10.1103/PhysRevLett.111.135504
  • Langer JS. Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature. Phys Rev E. 2004;70:041502. doi: 10.1103/PhysRevE.70.041502
  • Wang Z, Wen P, Huo LS, et al. Signature of viscous flow units in apparent elastic regime of metallic glasses. Appl Phys Lett. 2012;101.
  • Xu B, Falk ML, Li JF, et al. Predicting shear transformation events in metallic glasses. Phys Rev Lett. 2018;120:5.
  • Peng HL, Li MZ, Wang WH. Structural signature of plastic deformation in metallic glasses. Phys Rev Lett. 2011;106:135503. doi: 10.1103/PhysRevLett.106.135503
  • Harmon JS, Demetriou MD, Johnson WL, et al. Anelastic to plastic transition in metallic glass-forming liquids. Phys Rev Lett. 2007;99:135502. doi: 10.1103/PhysRevLett.99.135502
  • Debenedetti PG, Stillinger FH. Supercooled liquids and the glass transition. Nature. 2001;410:259–267. doi: 10.1038/35065704
  • Yu HB, Shen X, Wang Z, et al. Tensile plasticity in metallic glasses with pronounced β relaxations. Phys Rev Lett. 2012;108:015504. doi: 10.1103/PhysRevLett.108.015504
  • Yu HB, Wang WH, Bai HY, et al. Relating activation of shear transformation zones to beta relaxations in metallic glasses. Phys Rev B. 2010;81:220201. doi: 10.1103/PhysRevB.81.220201
  • Wang Q, Liu JJ, Ye YF, et al. Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses. Mater Today. 2017;20:293–300. doi: 10.1016/j.mattod.2017.05.007
  • Cui BY, Evenson Z, Fan BB, et al. Possible origin of beta-relaxation in amorphous metal alloys from atomic-mass differences of the constituents. Phys Rev B. 2018;98:7.
  • Bi QL, Lu YJ, Wang WH. Multiscale relaxation dynamics in ultrathin metallic glass-forming films. Phys Rev Lett. 2018;120:6. doi: 10.1103/PhysRevLett.120.155501
  • Wang XD, Zhang J, Xu TD, et al. Structural signature of beta-relaxation in La-based metallic glasses. J Phys Chem Lett. 2018;9:4308–4313. doi: 10.1021/acs.jpclett.8b02013
  • Yu HB, Yang MH, Sun Y, et al. Fundamental link between beta relaxation, excess wings, and cage-breaking in metallic glasses. J Phys Chem Lett. 2018;9:5877–5883. doi: 10.1021/acs.jpclett.8b02629
  • Zhu F, Nguyen HK, Song SX, et al. Intrinsic correlation between beta-relaxation and spatial heterogeneity in a metallic glass. Nat Commun. 2016;7:11516. doi: 10.1038/ncomms11516
  • Lu Z, Shang BS, Sun YT, et al. Revealing beta-relaxation mechanism based on energy distribution of flow units in metallic glass. J. Chem. Phys. 2016;144.
  • Zhang M, Chen Y, Wei D, et al. Extraordinary creep relaxation time in a La-based metallic glass. J Mater Sci. 2018;53:2956–2964. doi: 10.1007/s10853-017-1725-y
  • Zhang M, Wang YJ, Dai LH. Understanding the serrated flow and Johari-Goldstein relaxation of metallic glasses. J Non-Cryst Solids. 2016;444:23–30. doi: 10.1016/j.jnoncrysol.2016.04.036
  • Wang Z, Yu HB, Wen P, et al. Pronounced slow β-relaxation in La-based bulk metallic glasses. J Phys: Condens Matter. 2011;23:142202.
  • Yang H, Li X, Li Y. The effect of various transition metals on glass formation in ternary La-TM-Al (TM = Co, Ni, Cu) alloys. J Mater Res. 2011;26:992–996. doi: 10.1557/jmr.2011.39
  • Wei BC, Zhang LC, Zhang TH, et al. Strain rate dependence of plastic flow in Ce-based bulk metallic glass during nanoindentation. J Mater Res. 2007;22:258–263. doi: 10.1557/jmr.2007.0039
  • Schuh CA, Nieh TG, Kawamura Y. Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J Mater Res. 2002;17:1651–1654. doi: 10.1557/JMR.2002.0243
  • Klaumünzer D, Maaß R, Löffler JF. Stick-slip dynamics and recent insights into shear banding in metallic glasses. J. Mater. Res. 2011;26:1453–1463. doi: 10.1557/jmr.2011.178
  • Murali P, Ramamurty U, Shenoy VB. Strain accommodation in inelastic deformation of glasses. Phys Rev B. 2007;75:024203. doi: 10.1103/PhysRevB.75.024203
  • Lemaitre A, Caroli C. Rate-dependent avalanche size in athermally sheared amorphous solids. Phys Rev Lett. 2009;103:4. doi: 10.1103/PhysRevLett.103.065501
  • Williams G, Watts DC. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc. 1970;66:80–85. doi: 10.1039/tf9706600080
  • Luttich M, Giordano VM, Le Floch S, et al. Anti-aging in ultrastable metallic glasses. Phys Rev Lett. 2018;120:135504. doi: 10.1103/PhysRevLett.120.135504
  • Wang Z, Sun BA, Bai HY, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat Commun. 2014;5:5823. doi: 10.1038/ncomms6823
  • Jiang MQ, Ling Z, Meng JX, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philos Mag. 2008;88:407–426. doi: 10.1080/14786430701864753