1,873
Views
22
CrossRef citations to date
0
Altmetric
Reports

On the switching between negative and positive thermal expansion in framework materials

ORCID Icon
Pages 412-417 | Received 15 Feb 2019, Published online: 31 May 2019

References

  • Takenaka K. Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater. 2012;13:013001. doi: 10.1088/1468-6996/13/1/013001
  • Chen J, Hu L, Deng J, et al. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev. 2015;44:3522–3567. doi: 10.1039/C4CS00461B
  • Dove M, Fang H. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation. Rep Prog Phys. 2016;79:066503. doi: 10.1088/0034-4885/79/6/066503
  • Chapman KW, Chupas P J. Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide. J Am Chem Soc. 2007;129:10090–10091. doi: 10.1021/ja073791e
  • Zhu J, Zhang J, Xu H, et al. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3. Sci Rep. 2014;4:3700. doi: 10.1038/srep03700
  • Morelock CR, Greve BK, Gallington LC, et al. Negative thermal expansion and compressibility of Sc1−xYxF3 (x≤0.25). J Appl Phys. 2013;114:213501. doi: 10.1063/1.4836855
  • Gallington LC, Hester BR, Kaplan BS, et al. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate. J Solid State Chem. 2017;249:46–50. doi: 10.1016/j.jssc.2017.02.014
  • Chen J, Gao Q, Sanson A, et al. Tunable thermal expansion in framework materials through redox intercalation. Nat Commun. 2017;8:14441. doi: 10.1038/ncomms14441
  • Senn MS, Murray CA, Luo X, et al. Symmetry switching of negative thermal expansion by chemical control. J Am Chem Soc. 2016;138:5479–5482. doi: 10.1021/jacs.5b13192
  • Yang C, Zhang Y, Bai J, et al. Crossover of thermal expansion from positive to negative by removing the excess fluorines in cubic ReO3-type TiZrF7−x. J Mater Chem C. 2018;6:5148–5152. doi: 10.1039/C7TC04875K
  • Hu L, Chen J, Xu J, et al. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J Am Chem Soc. 2016;138:14530–14533. doi: 10.1021/jacs.6b08746
  • Hancock JC, Chapman KW, Halder GJ, et al. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-Type AIIBIV F6: CaZrF6 and CaHfF6. Chem Mater. 2015;27:3912–3918. doi: 10.1021/acs.chemmater.5b00662
  • Morelock CR, Gallington LC, Wilkinson AP. Evolution of negative thermal expansion and phase transitions in Sc1−xTixF3. Chem Mater. 2014;26:1936–1940. doi: 10.1021/cm5002048
  • Morelock CR, Gallington LC, Wilkinson AP. Solid solubility, phase-transitions, thermal expansion, and compressibility in Sc1−xAlxF3. J Solid State Chem. 2015;222:96–102. doi: 10.1016/j.jssc.2014.11.007
  • Hu L., Chen J., Fan L.. et al. Zero thermal expansion and ferromagnetism in cubic Sc1−xMxF3 (M = Ga, Fe) over a wide temperature range. J Am Chem Soc. 2014;136:13566–13569. doi: 10.1021/ja5077487
  • Greve BK, Martin KL, Lee PL, et al. Pronounced negative thermal expansion from a simple structure: cubic scF3. J Am Chem Soc. 2010;132:15496–15498. doi: 10.1021/ja106711v
  • Hu L, Qin F, Sanson A, et al. Localized symmetry breaking for tuning thermal expansion in scF3 nanoscale frameworks. J Am Chem Soc. 2018;140:4477–4480. doi: 10.1021/jacs.8b00885
  • Reinen D, Steffens F. Struktur und Bindung in ubergangsmetall-Fluoriden MIIMeIV F6, A. Phasenubergange. Z anorg allg Chem. 1978;441:63. doi: 10.1002/zaac.19784410108
  • Rodriguez V, Couzi M, Tressaud A, et al. Structural phase transition in the ordered fluorides MIIZrF6 (MII = Co, Zn): i. Structural study. J Phys: Condens Matter. 1990;2:7373–7386.
  • Daniel P, Bulou A, Rousseau M, et al. Raman-scattering study of crystallized MF3 compounds (M=Al,Cr,Ga,V,Fe,In): an approach to the short-range-order force constants. Phys Rev B. 1990;42:10545–10552. doi: 10.1103/PhysRevB.42.10545
  • Kennedy BJ, Vogt T. Powder X-ray diffraction study of the rhombohedral to cubic phase transition in TiF3. Mater Res Bull. 2002;37:77–83. doi: 10.1016/S0025-5408(01)00800-5
  • Xu J, Hu L, Song Y, et al. Zero thermal expansion in cubic MgZrF6. J Am Ceram Soc. 2017;100:5385–5388. doi: 10.1111/jace.15105
  • Hammonds KD, Dove M, Giddy AP, et al. Rigid-unit phonon modes and structural phase transitions in framework silicates. Am Mineral. 1996;81:1057–1079. doi: 10.2138/am-1996-9-1003
  • Sanson A, Giarola M, Mariotto G, et al. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations. Mater Chem Phys. 2016;180:213–218. doi: 10.1016/j.matchemphys.2016.05.067
  • Tao JZ, Sleight A. The role of rigid unit modes in negative thermal expansion. J Solid State Chem. 2003;173:442–448. doi: 10.1016/S0022-4596(03)00140-3
  • Cusack NE. The physics of structurally disordered matter. Bristol: Adam Hilger; 1987.
  • Chen W, Li X, Tang JA, et al. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys Rev Lett. 2011;107:195504.
  • Liu Y, Wang Z, Wu M, et al. Negative thermal expansion in isostructural cubic ReO3 and ScF3: a comparative study. Comput Mater Sci. 2015;107:157–162. doi: 10.1016/j.commatsci.2015.05.019