2,526
Views
11
CrossRef citations to date
0
Altmetric
Original Report

Plastic deformation transition in FeCrCoNiAlx high-entropy alloys

, , , , &
Pages 439-445 | Received 06 Dec 2018, Published online: 22 Jul 2019

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230. doi: 10.1038/nature17981
  • Ogata S, Li J, Yip S. Ideal pure shear strength of aluminum and copper. Science. 2002;298:807–811. doi: 10.1126/science.1076652
  • Rice JR. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids. 1992;40:239–271. doi: 10.1016/S0022-5096(05)80012-2
  • Tadmor EB, Hai S. A Peierls criterion for the onset of deformation twinning at a crack tip. J Mech Phys Solids. 2003;51:765–793. doi: 10.1016/S0022-5096(03)00005-X
  • Asaro RJ, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 2005;53:3369–3382. doi: 10.1016/j.actamat.2005.03.047
  • Li D, Zhang Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics. 2016;70:24–28. doi: 10.1016/j.intermet.2015.11.002
  • Komarasamy M, Alagarsamy K, Mishra RS. Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy. Intermetallics. 2017;84:20–24. doi: 10.1016/j.intermet.2016.12.016
  • Komarasamy M, Kumar N, Tang Z, et al. Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy. Mater Res Lett. 2015;3:30–34. doi: 10.1080/21663831.2014.958586
  • Wu SW, Wang G, Yi J, et al. Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy. Mater Res Lett. 2017;5:276–283. doi: 10.1080/21663831.2016.1257514
  • Li Z, Zhao S, Diao H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: remarkable resistance to shear failure. Sci Rep. 2017;7:42742. doi: 10.1038/srep42742
  • Feng XB, Fu W, Zhang JY, et al. Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films. Scr Mater. 2017;139:71–76. doi: 10.1016/j.scriptamat.2017.06.009
  • Chou HP, Chang YS, Chen SK, et al. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater Sci Eng B. 2009;163:184–189. doi: 10.1016/j.mseb.2009.05.024
  • Kao YF, Chen TJ, Chen SK, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J Alloys Compd. 2009;488:57–64. doi: 10.1016/j.jallcom.2009.08.090
  • Wang WR, Wang WL, Wang SC, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51. doi: 10.1016/j.intermet.2012.03.005
  • Li D, Li C, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017;123:285–294. doi: 10.1016/j.actamat.2016.10.038
  • Ding J, Asta M, Ritchie RO. Melts of CrCoNi-based high-entropy alloys: atomic diffusion and electronic/atomic structure from ab initio simulation. Appl Phys Lett. 2018;113:111902. doi: 10.1063/1.5045216
  • Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc Natl Acad Sci USA. 2018;115:8919–8924. doi: 10.1073/pnas.1808660115
  • Vitos L. Computational quantum mechanics for materials engineers. London: Springer; 2007.
  • Soven P. Coherent-potential model of substitutional disordered alloys. Phys Rev. 1967;156:809–813. doi: 10.1103/PhysRev.156.809
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Győrffy BL, Pindor AJ, Staunton J, et al. A first-principles theory of ferromagnetic phase transitions in metals. J Phys F: Met Phys. 1985;15:1337–1386. doi: 10.1088/0305-4608/15/6/018
  • Gschneidner KA. Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. 1964;16:275–426. doi: 10.1016/S0081-1947(08)60518-4
  • Huang S, Vida Á, Li W, et al. Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment. Appl Phys Lett. 2017;110:241902. doi: 10.1063/1.4985724
  • Huang S, Li W, Holmström E, et al. Strengthening induced by magnetochemical transition in Al-doped Fe-Cr–Co–Ni high-entropy alloys. Phys Rev Appl. 2018;10:064033. doi: 10.1103/PhysRevApplied.10.064033
  • Huang S. The chemical ordering and elasticity in FeCoNiAl1−xTix high-entropy alloys. Scr Mater. 2019;168:5–9. doi: 10.1016/j.scriptamat.2019.04.008
  • Zhang Z, Mao MM, Wang J, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2015;6:10143. doi: 10.1038/ncomms10143
  • Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun. 2016;7:10602. doi: 10.1038/ncomms10602
  • Zhang Z, Sheng H, Wang Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun. 2017;8:14390. doi: 10.1038/ncomms14390
  • Zhang F, Wu Y, Lou H, et al. Polymorphism in a high-entropy alloy. Nat Commun. 2017;8:15687. doi: 10.1038/ncomms15687
  • Tracy CL, Park S, Rittman DR, et al. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2017;8:15634. doi: 10.1038/ncomms15634
  • Huang S, Huang H, Li W, et al. Twinning in metastable high-entropy alloys. Nat Commun. 2018;9:2381. doi: 10.1038/s41467-018-04780-x
  • Kibey S, Liu JB, Curtis MJ, et al. Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels. Acta Mater. 2006;54:2991–3001. doi: 10.1016/j.actamat.2006.02.048
  • Muzyk M, Pakiela Z, Kurzydlowski KJ. Generalized stacking fault energy in magnesium alloys: density functional theory calculations. Scr Mater. 2012;66:219–222. doi: 10.1016/j.scriptamat.2011.10.038
  • Siegel DJ. Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys. Appl Phys Lett. 2005;87:121901. doi: 10.1063/1.2051793
  • Sato K, Bergqvist L, Kudrnovský J, et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys. 2010;82:1633–1690. doi: 10.1103/RevModPhys.82.1633
  • Huang S, Holmström E, Eriksson O, et al. Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics. 2018;95:80–84. doi: 10.1016/j.intermet.2018.01.016
  • De Cooman BC, Chin KG, Kim JK. High Mn TWIP steels for automotive applications. In: M. Chiaberge, editor. New trends and developments in automotive system engineering. Rijeka: InTech; 2011. p. 101–128.
  • Jo M, Koo YM, Lee BJ, et al. Theory for plasticity of face-centered cubic metals. Proc Natl Acad Sci USA. 2014;111:6560–6565. doi: 10.1073/pnas.1400786111
  • Olson GB, Cohen M. A general mechanism of martensitic nucleation: part I. general concepts and the FCC → HCP transformation. Metall Trans A. 1976;7:1897–1904.
  • Jin ZH, Dunham ST, Gleiter H, et al. A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr Mater. 2011;64:605–608. doi: 10.1016/j.scriptamat.2010.11.033
  • Jahnátek M, Hafner J, Krajčí M. Shear deformation, ideal strength, and stacking fault formation of fcc metals: a density-functional study of Al and Cu. Phys Rev B. 2009;79:224103. doi: 10.1103/PhysRevB.79.224103