5,700
Views
42
CrossRef citations to date
0
Altmetric
Original Reports

Phase prediction of Ni-base superalloys via high-throughput experiments and machine learning

ORCID Icon, , , , , , , , , , , , , , & show all
Pages 32-40 | Received 08 Jun 2020, Published online: 27 Sep 2020

References

  • Alabort E, Barba D, Shagiev MR, et al. Alloys-by-design: application to titanium alloys for optimal superplasticity. Acta Mater. 2019;178:275–287.
  • Smith T, Esser B, Antolin N, et al. Phase transformation strengthening of high-temperature superalloys. Nat Commun. 2016;7(1):1–7.
  • Pollock TM. Alloy design for aircraft engines. Nat Mater. 2016;15(8):809–815.
  • Almirall N, Wells P, Yamamoto T, et al. Precipitation and hardening in irradiated low alloy steels with a wide range of Ni and Mn compositions. Acta Mater. 2019;179:119–128.
  • Sun W, Zhu Y, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science. 2019;363(6430):972–975.
  • Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature. 2019;574(7777):223–227.
  • Wang Z, Zhang L, Li W, et al. High throughput experiment assisted discovery of new Ni-base superalloys. Scr Mater. 2020;178:134–138.
  • Jones N, Christofidou K, Mignanelli P, et al. Influence of elevated Co and Ti levels on polycrystalline powder processed Ni-base superalloy. Mater Sci Technol. 2014;30(15):1853–1861.
  • Christofidou KA, Hardy MC, Li H-Y, et al. On the effect of Nb on the microstructure and properties of next generation polycrystalline powder metallurgy Ni-based superalloys. Metallurgical and Materials Transactions A. 2018;49(9):3896–3907.
  • Seiser B, Drautz R, Pettifor D. TCP phase predictions in Ni-based superalloys: structure maps revisited. Acta Mater. 2011;59(2):749–763.
  • Antonov S, Detrois M, Isheim D, et al. Comparison of thermodynamic database models and APT data for strength modeling in high Nb content γ–γ′ Ni-base superalloys. Mater Des. 2015;86:649–655.
  • Rae CM, Reed RC. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater. 2001;49(19):4113–4125.
  • Rideout S, Manly W, Kamen E, et al. Intermediate phases in ternary alloy systems of transition elements. JOM. 1951;3(10):872–876.
  • Das D. Intermediate phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co ternary systems. rn. 1952;1:2–1.
  • Boesch WJ, Slaney JS. Preventing sigma phase embrittlement in nickel base superalloys. Metal Progress. 1964;86(1):109–111.
  • Morinaga M, Yukawa N, Adachi H, et al. New PHACOMP and its applications to alloy design. Superalloys 1984. 1984: 523–532.
  • Butler KT, Davies DW, Cartwright H, et al. Machine learning for molecular and materials science. Nature. 2018;559(7715):547–555.
  • Balachandran PV, Young J, Lookman T, et al. Learning from data to design functional materials without inversion symmetry. Nat Commun. 2017;8(1):1–13.
  • Adam SP, Alexandropoulos S-AN, Pardalos PM, et al. No free lunch theorem: a review. Approximation and optimization. Cham, Switzerland: Springer; 2019. p. 57–82.
  • Choubin B, Borji M, Mosavi A, et al. Snow avalanche hazard prediction using machine learning methods. J Hydrol. 2019;577:123929.
  • Min X, Yu B, Wang F. Predictive modeling of the hospital readmission risk from patients’ claims data using machine learning: a case study on COPD. Sci Rep. 2019;9(1):1–10.
  • Morinaga M, Yukawa N, Adachi H, Ezaki H, New PHACOMP and its applications to alloy design. In: Gell M, et al., editors. Superalloys 1984. Warrendale, PA, USA: The Metallurgical Society of AIME; 1984. p. 523–532.
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10(6):534–538.
  • Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics. 2013;41:96–103.
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817–2829.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.
  • Fang S, Xiao X, Xia L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non Cryst Solids. 2003;321(1-2):120–125.
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2-3):233–238.
  • Singh AK, Kumar N, Dwivedi A, et al. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics. 2014;53:112–119.
  • Wang Z, Huang Y, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys. Scr Mater. 2015;94:28–31.
  • Ye Y, Wang Q, Lu J, et al. Design of high entropy alloys: a single-parameter thermodynamic rule. Scr Mater. 2015;104:53–55.
  • Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Advances in neural information processing systems; 2017.