2,905
Views
31
CrossRef citations to date
0
Altmetric
Report

Trimodal grain structure enables high-strength CNT/Al-Cu-Mg composites higher ductility by powder assembly & alloying

, , , , , , & show all
Pages 50-57 | Received 29 Jun 2020, Published online: 05 Oct 2020

References

  • Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep. 2013;74(10):281–350. doi: 10.1016/j.mser.2013.08.001
  • Chen B, Shen J, Ye X, et al. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 2017;140:317–325. doi: 10.1016/j.actamat.2017.08.048
  • Wei H, Li Z, Xiong D-B, et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr Mater. 2014;75:30–33. doi: 10.1016/j.scriptamat.2013.11.014
  • Choi HJ, Min BH, Shin JH, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes. Compos A: Appl Sci Manuf. 2011;42(10):1438–1444. doi: 10.1016/j.compositesa.2011.06.008
  • Jagannatham M, Chandran P, Sankaran S, et al. Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review. Carbon N Y. 2020;160:14–44. doi: 10.1016/j.carbon.2020.01.007
  • Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–155. doi: 10.1016/j.actamat.2013.09.042
  • Jiang L, Li Z, Fan G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon N Y. 2012;50(5):1993–1998. doi: 10.1016/j.carbon.2011.12.057
  • He T, He X, Tang P, et al. The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater Des. 2017;114:373–382. doi: 10.1016/j.matdes.2016.11.008
  • Xu R, Tan Z, Fan G, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Compos A: Appl Sci Manuf. 2018;111:1–11. doi: 10.1016/j.compositesa.2018.05.012
  • Ovid'ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540. doi: 10.1016/j.pmatsci.2018.02.002
  • Yang M, Yan D, Yuan F, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc Natl Acad Sci USA. 2018;115(28):7224–7229. doi: 10.1073/pnas.1807817115
  • Park HK, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress. Mater Res Lett. 2018;6(5):261–267. doi: 10.1080/21663831.2018.1439115
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA. 2015;112(47):14501–14505. doi: 10.1073/pnas.1517193112
  • Liu ZY, Ma K, Fan GH, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation. Carbon N Y. 2020;157:602–613. doi: 10.1016/j.carbon.2019.10.080
  • Salama EI, Abbas A, Esawi AMK. Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Compos A: Appl Sci Manuf. 2017;99:84–93. doi: 10.1016/j.compositesa.2017.04.002
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345(6203):1455–1456. doi: 10.1126/science.1255940
  • Zhao Y, Topping T, Bingert JF, et al. High tensile ductility and strength in bulk nanostructured nickel. Adv Mater. 2008;20(16):3028–3033. doi: 10.1002/adma.200800214
  • Liu ZY, Xiao BL, Wang WG, et al. Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method. Compos A: Appl Sci Manuf. 2017;94:189–198. doi: 10.1016/j.compositesa.2016.11.029
  • Ebenberger P, Uggowitzer PJ, Kirnstötter S, et al. Processing-controlled suppression of Lüders elongation in AlMgMn alloys. Scr Mater. 2019;166:64–67. doi: 10.1016/j.scriptamat.2019.02.047
  • Yu CY, Kao PW, Chang CP. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater. 2005;53(15):4019–4028. doi: 10.1016/j.actamat.2005.05.005
  • Zhang Z, Topping T, Li Y, et al. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr Mater. 2011;65(8):652–655. doi: 10.1016/j.scriptamat.2011.06.037
  • Zan YN, Zhou YT, Liu ZY, et al. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. Mater Des. 2019;166:107629. doi: 10.1016/j.matdes.2019.107629
  • Han B, Lavernia E, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys. Metall Mater Trans A. 2005;36(4):957–965. doi: 10.1007/s11661-005-0289-7
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7(10):393–398. doi: 10.1080/21663831.2019.1616331
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532. doi: 10.1080/21663831.2017.1343208
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4(3):145–151. doi: 10.1080/21663831.2016.1153004
  • Cheng Z, Zhou H, Lu Q, et al. Extra strengthening and work hardening in gradient nanotwinned metals. Science. 2018;362(6414):eaau1925. doi: 10.1126/science.aau1925