1,781
Views
14
CrossRef citations to date
0
Altmetric
Original Reports

Particle stimulated nucleation revisited in three dimensions: a laboratory-based multimodal X-ray tomography investigation

, ORCID Icon, , , , & ORCID Icon show all
Pages 65-70 | Received 06 Jul 2020, Published online: 20 Oct 2020

References

  • Humphreys J, Rohrer GS, Rollett A. Recrystallization and related annealing phenomena. 3rd ed Amsterdam: Elsevier; 2017.
  • Humphreys FJ. The nucleation of recrystallization at second phase particles in deformed aluminium. Acta Metall. 1977;25:1323–1344. doi: 10.1016/0001-6160(77)90109-2
  • Humphreys FJ. Local lattice rotations at second phase particles in deformed metals. Acta Metall. 1979;27:1801–1814. doi: 10.1016/0001-6160(79)90071-3
  • Tangen S, Sjølstad K, Furu T, et al. Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al-Mn alloy. Metall Mater Trans A Phys Metall Mater Sci. 2010;41:2970–2983. doi: 10.1007/s11661-010-0265-8
  • Da Fonseca JQ, Ko L. The kinematics of deformation and the development of substructure in the particle deformation zone. IOP Conf Ser Mater Sci Eng. 2015;89:012012. doi: 10.1088/1757-899X/89/1/012012
  • Marshall GJ. Microstructural control during processing of aluminium canning alloys. Mater Sci Forum. 1996;217–222:19–30. doi: 10.4028/www.scientific.net/MSF.217-222.19
  • Zhang Y, Juul Jensen D, Zhang Y, et al. Three-dimensional investigation of recrystallization nucleation in a particle-containing Al alloy. Scr Mater. 2012;67:320–323. doi: 10.1016/j.scriptamat.2012.05.006
  • Weiland H, Rouns TN, Liu J. The role of particle stimulated nucleation during recrystallization of an aluminum-manganese alloy. Z Met. 1994;85:592–597.
  • Guo Q, Lei X, Sanders RE, et al. Effect of annealing conditions on recrystallization of AA5182 sheet. Mater Sci Forum. 2017;877:264–271. doi: 10.4028/www.scientific.net/MSF.877.264
  • Bachmann F, Bale H, Gueninchault N, et al. 3D grain reconstruction from laboratory diffraction contrast tomography. J Appl Crystallogr. 2019;52:643–651. doi: 10.1107/S1600576719005442
  • Sun J, Zhang Y, Lyckegaard A, et al. Grain boundary wetting correlated to the grain boundary properties: a laboratory-based multimodal X-ray tomography investigation. Scr Mater. 2019;163:77–81. doi: 10.1016/j.scriptamat.2019.01.007
  • Lu N, Kang J, Senabulya N, et al. Dynamics of particle-assisted abnormal grain growth revealed through integrated three-dimensional microanalysis. Acta Mater. 2020;195:1–12. doi: 10.1016/j.actamat.2020.04.049
  • Keinan R, Bale H, Gueninchault N, et al. Integrated imaging in three dimensions: providing a new lens on grain boundaries, particles, and their correlations in polycrystalline silicon. Acta Mater. 2018;148:225–234. doi: 10.1016/j.actamat.2018.01.045
  • McDonald SA, Holzner C, Lauridsen EM, et al. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT). Sci Rep. 2017;7:1–11. doi: 10.1038/s41598-017-04742-1
  • Niverty S, Sun J, Williams J, et al. A forward modeling approach to high-reliability grain mapping by laboratory diffraction contrast tomography (LabDCT). JOM. 2019;71:2695–2704. doi: 10.1007/s11837-019-03538-0
  • Hansen N, Juul Jensen D. Deformation and recrystallization textures in commercially pure aluminum. Metall Trans A. 1986;17:253–259. doi: 10.1007/BF02643901
  • Yan S, Zhou H, Qin QH. Microstructure versus size: nano/microscale deformation of solute-strengthening Al alloys via pillar compression tests. Mater Res Lett. 2019;7:53–59. doi: 10.1080/21663831.2018.1553802
  • Sanders RE, Baumann SF, Stumpf HC. Wrought non–heat-treatable aluminum alloys. In: Vasudevan AK, Doherty RD, editor. Aluminum alloys research applied. San Diego: Academic Press; 1989. p. 65–105.
  • Humphreys FJ, Juul Jensen D. Structure and texture evolution during the recrystallisation of particle containing materials. Proc 7th Risø Int Symp. 1986:93–106.