1,037
Views
4
CrossRef citations to date
0
Altmetric
Original Reports

Accelerated grain boundary migration in nanolaminated interstitial-free steel during chromizing

, , &
Pages 84-90 | Received 15 Feb 2020, Published online: 24 Nov 2020

References

  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103–189. doi: 10.1016/S0079-6425(99)00007-9
  • Wang ZB, Lu K. Diffusion and surface alloying of gradient nanostructured metals. Beilstein J Nanotechnol. 2017;8:547–560. doi: 10.3762/bjnano.8.59
  • Divinski SV. Grain boundary diffusion in severe plastically deformed metals: state of the art and unresolved issues. Diffus Found. 2015;5:57–73. doi: 10.4028/www.scientific.net/DF.5.57
  • Sauvage X, Wilde G, Divinski SV, et al. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater Sci Eng A. 2012;540:1–12. doi: 10.1016/j.msea.2012.01.080
  • Tong WP, Tao NR, Wang ZB, et al. Nitriding iron at lower temperatures. Science. 2003;299(5607):686–688. doi: 10.1126/science.1080216
  • Lu SD, Wang ZB, Lu K. Enhanced chromizing kinetics of tool steel by means of surface mechanical attrition treatment. Mater Sci Eng A. 2010;527(4–5):995–1002. doi: 10.1016/j.msea.2009.10.030
  • Ames M, Markmann J, Karos R, et al. Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 2008;56(16):4255–4266. doi: 10.1016/j.actamat.2008.04.051
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1:16019. doi: 10.1038/natrevmats.2016.19
  • Chookajorn T, Murdoch HA, Schuh CA. Design of stable nanocrystalline alloys. Science. 2012;337(6097):951–954. doi: 10.1126/science.1224737
  • Liu XC, Zhang HW, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science. 2013;342(6156):337–340. doi: 10.1126/science.1242578
  • Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr Mater. 2012;66(11):860–865. doi: 10.1016/j.scriptamat.2012.01.026
  • Xie SL, Wang ZB, Lu K. Diffusion behavior of Cr in gradient nanolaminated surface layer on an interstitial-free steel. J Mater Sci Technol. 2019;35(3):460–464. doi: 10.1016/j.jmst.2018.09.043
  • Ribbe J, Schmitz G, Gunderov D, et al. Effect of annealing on percolating porosity in ultrafine-grained copper produced by equal channel angular pressing. Acta Mater. 2013;61(14):5477–5486. doi: 10.1016/j.actamat.2013.05.036
  • Wang ZB, Divinski SV, Luo ZP, et al. Revealing interfacial diffusion kinetics in ultra-fine-laminated Ni with low-angle grain boundaries. Mater Res Lett. 2017;5(8):577–583. doi: 10.1080/21663831.2017.1368036
  • Frolov T, Divinski SV, Asta M, et al. Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. Phys Rev Lett. 2013;110(25):5. doi: 10.1103/PhysRevLett.110.255502
  • Harrison LG. Influence of dislocations on diffusion kinetics in solids with particular reference to alkali halides. Trans Faraday Soc. 1961;57(8):1191–2001. doi: 10.1039/tf9615701191
  • Bowen AW, Leak GM. Solute diffusion in alpha-iron and gamma-iron. Metall Trans. 1970;1(6):1695–1700. doi: 10.1007/BF02642019
  • Yu T, Hansen N. Coarsening kinetics of fine-scale microstructures in deformed materials. Acta Mater. 2016;120:40–45. doi: 10.1016/j.actamat.2016.08.032
  • Yu T, Hughes DA, Hansen N, et al. In situ observation of triple junction motion during recovery of heavily deformed aluminum. Acta Mater. 2015;86:269–278. doi: 10.1016/j.actamat.2014.12.014
  • Zhou X, Li XY, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size. Science. 2018;360(6388):526–530. doi: 10.1126/science.aar6941
  • Weissmüller J. Alloy effects in nanostructures. Nanostr Mater. 1993;3:261–272. doi: 10.1016/0965-9773(93)90088-S
  • Murdoch HA, Schuh CA. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J Mater Res. 2013;28(16):2154–2163. doi: 10.1557/jmr.2013.211
  • Saber M, Kotan H, Koch CC, et al. Thermodynamic stabilization of nanocrystalline binary alloys. J Appl Phys. 2013;113(6):63515-1–10. doi: 10.1063/1.4791704
  • Yang Y, Schönecker S, Li W, et al. First-principles study of the Σ3(112) grain boundary in Fe-rich Fe-Cr alloys. Scr Mater. 2020;181:140–143. doi: 10.1016/j.scriptamat.2020.02.029
  • Hillert M, Purdy GR. Chemically induced grain boundary migration. Acta Metall. 1978;26:333–340. doi: 10.1016/0001-6160(78)90132-3
  • Cahn JW, Pan JD, Balluffi RW. Diffusion induced grain boundary migration. Scr Metall. 1979;13(6):503–509. doi: 10.1016/0036-9748(79)90078-4
  • Beke DL, Kaganovskii Y, Katona GL. Interdiffusion along grain boundaries—diffusion induced grain boundary migration, low temperature homogenization and reactions in nanostructured thin films. Prog Mater Sci. 2018;98:625–674. doi: 10.1016/j.pmatsci.2018.07.001
  • Huang HW, Wang ZB, Lu J, et al. Fatigue behavior of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015;87:150–160. doi: 10.1016/j.actamat.2014.12.057
  • Pina J, Dias A, François M, et al. Residual stresses and crystallographic texture in hard-chromium electroplated coatings. Surf Coat Techn. 1997;96(2):148–162. doi: 10.1016/S0257-8972(97)00075-3
  • Brandstetter S, Zhang K, Escuadro A, et al. Grain coarsening during compression of bulk nanocrystalline nickel and copper. Scr Mater. 2008;58:61–64. doi: 10.1016/j.scriptamat.2007.08.042