12,839
Views
80
CrossRef citations to date
0
Altmetric
Overview paper

Additive friction stir deposition: a deformation processing route to metal additive manufacturing

ORCID Icon & ORCID Icon
Pages 71-83 | Received 21 Oct 2020, Published online: 24 Nov 2020

References

  • Viswanathan S. ASM International. Handbook committee: casting. Materials Park (OH): ASM International; 2008.
  • Semiatin SL. ASM International. Handbook Committee, Metalworking: sheet forming. Materials Park (OH): ASM International; 2006.
  • Tarng YS, Juang SC, Chang CH. The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing. J Mater Process Technol. 2002;128(1–3):1–6.
  • Juang SC, Tarng YS. Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. J Mater Process Technol. 2002;122(1):33–37.
  • Aslanlar S. The effect of nucleus size on mechanical properties in electrical resistance spot welding of sheets used in automotive industry. Mater Des. 2006;27(2):125–131.
  • Benyounis KY, Olabi AG, Hashmi MSJ. Effect of laser welding parameters on the heat input and weld-bead profile. J Mater Process Technol. 2005;164:978–985.
  • Cornu J. Fundamentals of fusion welding technology, IFS. Bedford (UK); Berlin (NY): Springer; 1988.
  • Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Hoboken (NJ): Wiley-Interscience; 2005.
  • Dietrich D, Nickel D, Krause M, et al. Formation of intermetallic phases in diffusion-welded joints of aluminium and magnesium alloys. J Mater Sci. 2011;46(2):357–364.
  • Bakavos D, Prangnell PB. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet. Mater Sci Eng A. 2010;527(23):6320–6334.
  • Carpenter SH, Wittman RH. Explosion welding. Annu Rev Mater Sci. 1975;5:177–199.
  • Findik F. Recent developments in explosive welding. Mater Des. 2011;32(3):1081–1093.
  • Akinlabi ET, Mahamood RM. Solid-state welding friction and friction stir welding processes, mechanical engineering. Cham: Springer; 2020. p. 1. online resource (p. 157).
  • American Society for Metals. Joining Division, ASM International. Handbook Committee, Welding fundamentals and processes. Materials Park (OH): ASM International; 2011.
  • Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. New York (NY): Springer; 2015, p. 1. online resource (xxi, p. 498).
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23(6):1917–1928.
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–360.
  • Everton SK, Hirsch M, Stravroulakis P, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des. 2016;95:431–445.
  • Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res. 2016;46:151–186.
  • DebRoy T, Mukherjee T, Wei HL, et al. Metallurgy, mechanistic models and machine learning in metal printing. Nat Rev Mater. 2020. DOI:10.1038/s41578-020-00236-1.
  • Basak A, Das S. Epitaxy and microstructure evolution in metal additive manufacturing. Annu Rev Mater Res. 2016;46:125–149.
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369.
  • Li N, Huang S, Zhang GD, et al. Progress in additive manufacturing on new materials: a review. J Mater Sci Technol. 2019;35(2):242–269.
  • Zhang JL, Song B, Wei QS, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35(2):270–284.
  • Tuncer N, Bose A. Solid-state metal additive manufacturing: a review. JOM. 2020;72:3090–3111.
  • Dehoff RR, Babu SS. Characterization of interfacial microstructures in 3003 aluminum alloy blocks fabricated by ultrasonic additive manufacturing. Acta Mater. 2010;58(13):4305–4315.
  • Hehr A, Norfolk M. A comprehensive review of ultrasonic additive manufacturing. Rapid Prototyp J. 2019;26(3):445–458.
  • Assadi H, Kreye H, Gartner F, et al. Cold spraying—a materials perspective. Acta Mater. 2016;116:382–407.
  • Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf. 2018;21:628–650.
  • Yu HZ, Jones ME, Brady GW, et al. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr Mater. 2018;153:122–130.
  • Phillips BJ, Avery DZ, Liu T, et al. Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si. Materialia. 2019;7:100387.
  • Chen CY, Xie YC, Yan XC, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4 V alloy fabricated by cold spray additive manufacturing. Addit Manuf. 2019;27:595–605.
  • Wang X, Feng F, Klecka MA, et al. Characterization and modeling of the bonding process in cold spray additive manufacturing. Addit Manuf. 2015;8:149–162.
  • Griffiths RJ, Perry MEJ, Sietins JM, et al. A perspective on solid-state additive manufacturing of aluminum matrix composites using MELD. J Mater Eng Perform. 2019;28(2):648–656.
  • Rivera OG, Allison PG, Jordon JB, et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Mater Sci Eng A. 2017;694:1–9.
  • Perry MEJ, Griffiths RJ, Garcia D, et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition. Addit Manuf. 2020;35:101293.
  • Jordon JB, Allison PG, Phillips BJ, et al. Direct recycling of machine chips through a novel solid-state additive manufacturing process. Mater Des. 2020;193:108850.
  • Kobryn PA, Moore EH, Semiatin SL. The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V. Scr Mater. 2000;43(4):299–305.
  • Mukherjee T, DebRoy T. Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J Manuf Process. 2018;36:442–449.
  • Gunenthiram V, Peyre P, Schneider M, et al. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J Mater Process Technol. 2018;251:376–386.
  • Iebba M, Astarita A, Mistretta D, et al. Influence of powder characteristics on formation of porosity in additive manufacturing of Ti-6Al-4V components. J Mater Eng Perform. 2017;26(8):4138–4147.
  • Wei HL, Mazumder J, DebRoy T. Evolution of solidification texture during additive manufacturing. Sci Rep. 2015;5(1):16446.
  • Popovich VA, Borisov EV, Popovich AA, et al. Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Des. 2017;114:441–449.
  • Dehoff RR, Kirka MM, Sames WJ, et al. Site specific control of crystallographic grain orientation through electron beam additive manufacturing. Mater Sci Technol. 2015;31(8):931–938.
  • Bermingham MJ, StJohn DH, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 2019;168:261–274.
  • Liu P, Wang Z, Xiao Y, et al. Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing. Addit Manuf. 2019;26:22–29.
  • Lin T-C, Cao C, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat Commun. 2019;10(1):4124.
  • Li R, Wang M, Li Z, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020;193:83–98.
  • Avery DZ, Phillips BJ, Mason CJT, et al. Influence of grain refinement and microstructure on fatigue behavior for solid-state additively manufactured Al-Zn-Mg-Cu Alloy. Metall Mater Trans A. 2020;51(6):2778–2795.
  • Garcia D, Hartley WD, Rauch HA, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: a comparative study of Cu and Al-Mg-Si. Addit Manuf. 2020;34:101386.
  • McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater. 2008;58(5):349–354.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd ed. Amsterdam; Boston: Elsevier; 2004.
  • Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207.
  • Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574.
  • Rivera OG, Allison PG, Brewer LN, et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition. Mater Sci Eng A. 2018;724:547–558.
  • Griffiths RJ, Petersen DT, Garcia D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy. Appl Sci. 2019;9(17):3486.
  • Liu ZY, Li C, Fang XY, et al. Energy consumption in additive manufacturing of metal parts. Procedia Manuf. 2018;26:834–845.
  • Agrawal R, Vinodh S. State of art review on sustainable additive manufacturing. Rapid Prototyp J. 2019;25(6):1045–1060.
  • Tillmann W, Schaak C, Nellesen J, et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit Manuf. 2017;13:93–102.
  • Qian M, Xu W, Brandt M, et al. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. MRS Bull. 2016;41(10):775–784.
  • Editors DE. MELD prints 10-foot Aluminum cylinder, digital engineering. 2020. Available from: https://www.digitalengineering247.com/article/meld-prints-10-foot-aluminum-cylinder/.
  • Hartley WD, Garcia D, Yoder JK, et al. Solid-state cladding on thin automotive sheet metals Enabled by additive friction stir deposition. J Mater Process Technol Under Rev. 2020.
  • Mishra RS, De PS, Kumar N. Friction stir welding and processing: science and engineering. Cham: Springer; 2014, p. 1 online resource (xii, p. 338).
  • Nandan R, Roy GG, Lienert TJ, et al. Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 2007;55(3):883–895.
  • Liu XC, Sun YF, Nagira T, et al. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Sci Technol Weld Joining. 2019;24(4):352–359.
  • Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science. 2019;363(6429):849–852.
  • Kumar R, Pancholi V, Bharti RP. Material flow visualization and determination of strain rate during friction stir welding. J Mater Process Technol. 2018;255:470–476.
  • De PS, Mishra RS, Smith CB. Effect of microstructure on fatigue life and fracture morphology in an aluminum alloy. Scr Mater. 2009;60(7):500–503.
  • Sharma SR, Ma ZY, Mishra RS. Effect of friction stir processing on fatigue behavior of A356 alloy. Scr Mater. 2004;51(3):237–241.
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51(4):427–556.
  • Sinha S, Mirshams RA, Wang T, et al. Nanoindentation behavior of high entropy alloys with transformation-induced plasticity. Sci Rep. 2019;9(1):6639.
  • Nene SS, Liu K, Frank M, et al. Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci Rep. 2017;7:7.
  • Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003;51(9):2685–2699.
  • Baczynski J, Jonas JJ. Torsion textures produced by dynamic recrystallization in α-iron and two interstitial-free steels. Metall Mater Trans A. 1998;29(2):447–462.
  • Barr CM, Thomas S, Hart JL, et al. Tracking the evolution of intergranular corrosion through twin-related domains in grain boundary networks. npj Mater Degrad. 2018;2(1):14.
  • Bechtle S, Kumar M, Somerday BP, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 2009;57(14):4148–4157.
  • Fan XH, Li M, Li DY, et al. Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation. Mater Sci Technol. 2014;30(11):1263–1272.
  • Ma XL, Eswarappa Prameela S, Yi P, et al. Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: a comparative study to conventional aging. Acta Mater. 2019;172:185–199.
  • Chen YC, Feng JC, Liu HJ. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys. Mater Charact. 2009;60(6):476–481.
  • Huang K, Marthinsen K, Zhao Q, et al. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog Mater Sci. 2018;92:284–359.
  • Dogan E, Wang S, Vaughan MW, et al. Dynamic precipitation in Mg-3Al-1Zn alloy during different plastic deformation modes. Acta Mater. 2016;116:1–13.
  • Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des. 2015;65:934–952.
  • Panigrahi SK, Mishra RS, Brennan RC, et al. Achieving extraordinary structural efficiency in a wrought magnesium rare earth alloy. Mater Res Lett. 2020;8(4):151–157.
  • Dutt AK, Gwalani B, Tungala V, et al. A novel nano-particle strengthened titanium alloy with exceptional specific strength. Sci Rep. 2019;9:11726. DOI:10.1038/s41598-019-48139-8.
  • Mironov S, Sato YS, Kokawa H. Friction-stir welding and processing of Ti-6Al-4V titanium alloy: a review. J Mater Sci Technol. 2018;34(1):58–72.
  • Hanamura T, Yin F, Nagai K. Ductile-brittle transition temperature of ultrafine Ferrite/cementite microstructure in a low carbon steel controlled by effective grain size. ISIJ Int. 2004;44(3):610–617.
  • Sekban DM, Aktarer SM, Xue P, et al. Impact toughness of friction stir processed low carbon steel used in shipbuilding. Mater Sci Eng A. 2016;672:40–48.
  • Huang M, Rivera-Díaz-del-Castillo PEJ, Bouaziz O, et al. Modelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics. Mater Sci Technol. 2009;25(7):833–839.
  • Koch CC. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr Mater. 2003;49(7):657–662.
  • Ma E, Wu X. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nat Commun. 2019;10(1):5623.
  • Miyamoto Y. Functionally graded materials: design, processing, and applications. Boston: Kluwer Academic Publishers; 1999.
  • Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded materials. Mater Sci Eng A. 2003;362(1):81–106.
  • Eizadjou M, Kazemi Talachi A, Danesh Manesh H, et al. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Compos Sci Technol. 2008;68(9):2003–2009.
  • Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47(2):579–583.
  • Duchaussoy A, Sauvage X, Edalati K, et al. Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles. Acta Mater. 2019;167:89–102.
  • Hannard F, Castin S, Maire E, et al. Ductilization of aluminium alloy 6056 by friction stir processing. Acta Mater. 2017;130:121–136.
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527–532.
  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323–331.
  • Zhu Y, Wu X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater Res Lett. 2019;7(10):393–398.
  • Estrin Y, Beygelzimer Y, Kulagin R. Design of architectured materials based on mechanically driven structural and compositional patterning. Adv Eng Mater. 2019;21(9):1900487.