6,211
Views
21
CrossRef citations to date
0
Altmetric
Report

Introducing transformation twins in titanium alloys: an evolution of α-variants during additive manufacturing

, , , , , , , , , & show all
Pages 119-126 | Received 06 Oct 2020, Published online: 18 Dec 2020

References

  • Zhang X, Misra A. Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr Mater. 2012;66:860–865.
  • Zhu YT, Liao XZ, Wu XL. Deformation twinning in nanocrystalline materials. Prog Mater Sci. 2012;57:1–62.
  • Wang J, Beyerlein IJ. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Model Simul Mater Sci Eng. 2012;20:024002.
  • Wang J, Liu L, Tomé CN, et al. Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal-close-packed metals. Mater Res Lett. 2013;1:81–88.
  • Zhao YH, Bingert JF, Liao XZ, et al. Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv Mater. 2006;18:2949–2953.
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–610.
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352.
  • Yu Q, Qi L, Chen K, et al. The nanostructured origin of deformation twinning. Nano Lett. 2012;12:887–892.
  • Yu Q, Shan ZW, Li J, et al. Strong crystal size effect on deformation twinning. Nature. 2010;463:335–338.
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392.
  • Burgers WG. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica. 1934;1:561–586.
  • Farabi E, Hodgson PD, Rohrer GS, et al. Five-parameter intervariant boundary characterization of martensite in commercially pure titanium. Acta Mater. 2018;154:147–160.
  • Guo Y, Britton TB, Wilkinson AJ. Slip band-grain boundary interactions in commercial-purity titanium. Acta Mater. 2014;76:1–12.
  • Beladi H, Chao Q, Rohrer GS. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy. Acta Mater. 2014;80:478–489.
  • DeMott R, Collins P, Kong C, et al. 3D electron backscatter diffraction study of α lath morphology in additively manufactured Ti-6Al-4V. Ultramicroscopy. 2020;218:113073.
  • Stephenson PL, Haghdadi N, DeMott R, et al. Effect of scanning strategy on variant selection in additively manufactured Ti-6Al-4V. Addit Manuf. 2020;36:101581.
  • Lütjering G, Williams JC. Titanium. 2nd ed. Berlin: Springer-Verlag; 2005.
  • Chao Q, Hodgson PD, Beladi H. Ultrafine grain formation in a Ti-6Al-4V alloy by thermomechanical processing of a martensitic microstructure. Metall Mater Trans A. 2014;45:2659–2671.
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17:63–71.
  • Liu L, Ding Q, Zhong Y, et al. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Mater Today. 2018;21:354–361.
  • Wu J, Wang XQ, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater. 2016;117:311–320.
  • Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015;85:74–84.
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010;58:3303–3312.
  • Gorsse S, Hutchinson C, Gouné M, et al. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci Technol Adv Mater. 2017;18:584–610.
  • Wang H, Zhu ZG, Chen H, et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Mater. 2020;196:609–625.
  • Xu W, Lui EW, Pateras A, et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. 2017;125:390–400.
  • Zhu YT, Liao XZ, Valiev RZ. Formation mechanism of fivefold deformation twins in nanocrystalline face-centered-cubic metals. Appl Phys Lett. 2005;86:1–3.
  • Bozzolo N, Chan L, Rollett AD. Misorientations induced by deformation twinning in titanium. J Appl Crystallogr. 2010;43:596–602.
  • Chen YJ, Li YJ, Walmsley JC, et al. Microstructural heterogeneity in hexagonal close-packed pure Ti processed by high-pressure torsion. J Mater Sci. 2012;47:4838–4844.
  • Song SG, Gray GT. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti—I. Application of the coincidence site lattice (CSL) theory to twinning problems in h.c.p. structures. Acta Metall Mater. 1995;43:2325–2337.
  • Williams JC, Tasggart R, Polonis DH. The morphology and substructure of Ti-Cu martensite. Met Trans. 1970;1:2265–2270.
  • Hall CR, Fawzi SAH. On the occurrence of multiply twinned particles in electrodeposited nickel films. Philos Mag A. 1986;54:805–820.