1,725
Views
7
CrossRef citations to date
0
Altmetric
Report

Stress-dependent dislocation core structures leading to non-Schmid behavior

, , &
Pages 134-140 | Received 28 Aug 2020, Published online: 18 Dec 2020

References

  • Hirth JP, Lothe J. Theory of dislocations. Wiley; 1982.
  • Lazar M, Maugin GA. Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int J Eng Sci. 2005;43(13):1157–1184.
  • Bulatov V, Abraham FF, Kubin L, et al. Connecting atomistic and mesoscale simulations of crystal plasticity. Nature. 1998;391(6668):669–672.
  • Schwarz KW. Simulation of dislocations on the mesoscopic scale. I. methods and examples. J Appl Phys. 1999;85(1):108–119.
  • Rodney D, Ventelon L, Clouet E, et al. Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Mater. 2017;124:633–659.
  • Bonneville J, Escaig B. Cross-slipping process and the stress-orientation dependence in pure copper. Acta Metall. 1979;27(9):1477–1486.
  • Duesbery Ma-S, Vitek V. Plastic anisotropy in b.c.c. transition metals. Acta Mater. 1998;46(5):1481–1492.
  • Spitzig WA, Richmond O. Acta Metall.1984;32:457–463.
  • Shen C, Li J, Wang Y. Predicting structure and energy of dislocations and grain boundaries. Acta Mater. 2014;74:125–131.
  • Errandonea D, Meng Y, Hausermann D, et al. Study of the phase transformations and equation of state of magnesium by synchrotron X-ray diffraction. J Phys: Condens Matter. 2003;15(47):1277–1289.
  • Schmunk RE, Smith CS. Pressure derivatives of the elastic constants of aluminum and magnesium. J Phys Chem Solids. 1959;9(2):100–112.
  • Iyengar PK, Venkataraman G, Vuayaraghavan PR, et al. Inelastic scattering of neutrons. Vol. I. Proceedings of the Symposium on Inelastic Scattering of Neutrons. (1965) 153–179.
  • Pynn R, Squires GL. Measurements of the normal-mode frequencies of magnesium. Proc R Soc London A. 1972;326:347–360.
  • Yasi JA, Hector LG, Trinkle DR. First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties. Acta Mater. 2010;58(17):5704–5713.
  • Wang Y, Li J. Phase field modeling of defects and deformation. Acta Mater. 2010;58(4):1212–1235.
  • Chen L-Q. Phase-Field models for Microstructure Evolution. Annu Rev Mater Res. 2002;32(1):113–140.
  • Peierls R. The size of a dislocation. Proc Phys Soc. 1940;52(1):34–37.
  • Kang K, Yin J, Cai W. Stress dependence of cross slip energy barrier for face-centered cubic nickel. J Mech Phys Solids. 2014;62:181–193.
  • Tan AMZ, Woodward C, Trinkle DR. Dislocation core structures in Ni-based superalloys computed using a density functional theory based flexible boundary condition approach. Phys Rev Mater. 2019;3(3):033609.
  • Qiu D, Zhao P, Shen C, et al. Predicting grain boundary structure and energy in BCC metals by integrated atomistic and phase-field modeling. Acta Mater. 2019;164:799–809.
  • Bulatov VV, Kaxiras E. Semidiscrete Variational Peierls Framework for dislocation core properties. Phys Rev Lett. 1997;78(22):4221–4224.
  • Joós B, Ren Q, Duesbery MS. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. Phys Rev B. 1994;50(9):5890–5898.
  • Hartford J, Von Sydow B, Wahnström G, et al. Peierls barriers and stresses for edge dislocations in Pd and Al calculated from first principles. Phys Rev B. 1998;58(5):2487–2496.
  • Sandlöbes S, Friák M, Neugebauer J, et al. Basal and non-basal dislocation slip in Mg–Y. Mater Sci Eng: A. 2013;576:61–68.
  • Wu Z, Curtin WA. The origins of high hardening and low ductility in magnesium. Nature. 2015;526(7571):62–67.
  • Yoo MH, Agnew SR, Morris JR, et al. Non-basal slip systems in HCP metals and alloys: source mechanisms. Mater Sci Eng: A. 2001;319:87–92.
  • Wang F, Agnew SR. Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int J Plast. 2016;81:63–86.
  • Zhao P, Shen C, Savage MF, et al. Slip transmission assisted by Shockley partials across α/β interfaces in Ti-alloys. Acta Mater. 2019;171:291–305.