2,991
Views
20
CrossRef citations to date
0
Altmetric
Report

Significant strengthening effect in few-layered MXene-reinforced Al matrix composites

, , &
Pages 148-154 | Received 21 Jul 2020, Published online: 23 Dec 2020

References

  • Pollock TM. Weight loss with magnesium alloys. Science. 2010;328:986–987.
  • Surappa MK. Aluminium matrix composites: challenges and opportunities. Sadhana. 2003;28:319–334.
  • Kang Y-C, Chan SL-I. Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys. 2004;85:438–443.
  • Su H, Gao W, Feng Z, et al. Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des (1980–2015). 2012;36:590–596.
  • Mazahery A, Ostadshabani M. Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J Compos Mater. 2011;45:2579–2586.
  • Rahman MH, Al Rashed HM. Characterization of silicon carbide reinforced aluminum matrix composites. Procedia Eng. 2014;90:103–109.
  • Hemanth J. Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater Sci Eng A. 2009;507:110–113.
  • Jiang L, Li ZQ, Fan GL, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon. 2012;50:1993–1998.
  • Chen B, Li S, Imai H, et al. An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater Des. 2015;72:1–8.
  • Kwon H, Estili M, Takagi K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon. 2009;47:570–577.
  • Zhou W, Yamaguchi T, Kikuchi K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater. 2017;125:369–376.
  • Yang XD, Liu EZ, Shi CS, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility. J Alloys Compd. 2013;563:216–220.
  • Chen B, Kondoh K, Li J, et al. Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Compos B Eng. 2020;183:107691.
  • Gao X, Yue HY, Guo EJ, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater Des. 2016;94:54–60.
  • Li G, Xiong BW. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J Alloys Compd. 2017;697:31–36.
  • Zhang Y, Li X. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett. 2017;17:6907–6915.
  • Bisht A, Srivastava M, Kumar RM, et al. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A. 2017;695:20–28.
  • Shin SE, Choi HJ, Shin JH, et al. Strengthening behavior of few-layered graphene/aluminum composites. Carbon N Y. 2015;82:143–151.
  • Zhou W, Mikulova P, Fan Y, et al. Interfacial reaction induced efficient load transfer in few-layer graphene reinforced Al matrix composites for high-performance conductor. Compos B Eng. 2019;167:93–99.
  • Wang JY, Li ZQ, Fan GL, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 2012;66:594–597.
  • Huang G, Shen Y, Guo R, et al. Fabrication of tungsten particles reinforced aluminum matrix composites using multi-pass friction stir processing: Evaluation of microstructural, mechanical and electrical behavior. Mater Sci Eng A. 2016;674:504–513.
  • Chen LG, Lin SJ, Chang SY. Tensile properties and thermal expansion behaviors of continuous molybdenum fiber reinforced aluminum matrix composites. Compos Sci Technol. 2006;66:1793–1802.
  • Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–4253.
  • Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6:1322–1331.
  • Kamysbayev V, James NM, Filatov AS, et al. Colloidal gelation in liquid metals enables functional nanocomposites of 2D metal carbides (MXenes) and lightweight metals. ACS Nano. 2019;13:12415–12424.
  • Lipatov A, Lu H, Alhabeb M, et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci Adv. 2018;4:eaat0491.
  • Zhang J, Li S, Hu S, et al. Chemical stability of Ti3C2 MXene with Al in the temperature range 500–700°C. Materials. 2018;11:1979.
  • Lu X, Zhang Q, Liao J, et al. High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb) 2Te3 matrix. Adv Energy Mater. 2020;10:1902986.
  • Li Z, Fan G, Tan Z, et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology. 2014;25:325601.
  • Ghidiu M, Lukatskaya MR, Zhao M, et al. Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature. 2014;516:78–81.
  • Kwon H, Takamichi M, Kawasaki A, et al. Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater Chem Phys. 2013;138:787–793.
  • Estili M, Kawasaki A. Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements. Adv Mater. 2010;22:607.
  • Cao X, Shi Q, Liu D, et al. Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors . Compos B Eng. 2018;139:97–105.
  • Hajjari E, Divandari M, Mirhabibi A. The effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting. Mater Des (1980–2015). 2010;31:2381–2386.