5,313
Views
10
CrossRef citations to date
0
Altmetric
Original Report

One-dimensional Co–Cu–Fe–Ni–Zn high-entropy alloy nanostructures

, , , , & ORCID Icon
Pages 285-290 | Received 22 Feb 2021, Published online: 19 Mar 2021

References

  • Ferry DK. Nanowires in nanoelectronics. Science. 2008;319(5863):579–580.
  • Garnett E, Mai L, Yang P. Introduction: 1D nanomaterials/nanowires. Chem Rev. 2019;119(15):8955–8957.
  • Goktas NI, Wilson P, Ghukasyan A, et al. Nanowires for energy: a review. App Phy Rev. 2018;5(4):041305.
  • Martínez-Banderas AI, Aires A, Teran FJ, et al. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. Sci Rep. 2016;6:35786.
  • Geng X, Navarrete E, Liang W, et al. Electrodeposited Fe-Mo-Ni nanowires and Cu-Mo-Fe-Ni alloy nanowire segments. Mater Lett. 2018;211:9–12.
  • Maliar T, Cesiulis H, Podlaha EJ. Coupled electrodeposition of Fe–Co–W alloys: thin films and nanowires [original research]. Front Chem. 2019;7(542):1–11.
  • Murty BS, Yeh J-W, Ranganathan S, et al. High-entropy alloys. Amsterdam: Elsevier; 2019.
  • George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater. 2019;4(8):515–534.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Li W, Liu P, Liaw PK. Microstructures and properties of high-entropy alloy films and coatings: a review. Mater Res Lett. 2018;6(4):199–229.
  • Waag F, Li Y, Ziefuß AR, et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019;9(32):18547–18558.
  • Liu X, Zhang J, Bi S, et al. Chemical complexity in high entropy alloys: a pair-interaction perspective. arXiv Preprint ArXiv. 2019:190710223.
  • Oh HS, Kim SJ, Odbadrakh K, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat Commun. 2019;10(1):2090.
  • Jin Z, Lyu J, Zhao Y-L, et al. Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide As highly stable electrocatalyst in Zn–Air batteries. ACS Mater Lett. 2020;2(12):1698–1706.
  • Gao H, Sun W, Sun Q, et al. Compositional varied core–shell InGaP nanowires grown by metal–organic chemical vapor deposition. Nano Lett. 2019;19(6):3782–3788.
  • Shankar KS, Raychaudhuri AK. Fabrication of nanowires of multicomponent oxides: Review of recent advances. Mater Sci Engn: C. 2005;25(5):738–751.
  • Wang N, Cai Y, Zhang RQ. Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng: R: Rep. 2008;63(1):1–30.
  • Min S-Y, Kim T-S, Kim BJ, et al. Large-scale organic nanowire lithography and electronics. Nat Commun. 2013;4(1):1–9.
  • Geissler M, Wolf H, Stutz R, et al. Fabrication of metal nanowires using microcontact printing. Langmuir. 2003;19(15):6301–6311.
  • Lupu N. Nanowires: science and technology. London: BoD–Books on Demand; 2010.
  • Mohammed H, Moreno JA, Kosel J. Advanced fabrication and characterization of magnetic nanowires. Magn Magn Mater 2017.
  • Sarkar J, Khan GG, Basumallick A. Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template. Bull Mater Sci. 2007;30(3):271–290.
  • Lupu N. Electrodeposited nanowires and their applications. London: BoD–Books on Demand; 2010.
  • Serrà A, Vallés E. Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: fundamentals and applications. Appl Mater Today. 2018;12:207–234.
  • Dahms H, Croll I. The anomalous codeposition of iron-nickel alloys. J Electrochem Soc. 1965;112(8):771–775.
  • Narayanan T, Shaijumon M, Ci L, et al. On the growth mechanism of nickel and cobalt nanowires and comparison of their magnetic properties. Nano Res. 2008;1(6):465–473.
  • Hills G, Pour AK, Scharifker B. The formation and properties of single nuclei. Electrochim Acta. 1983;28(7):891–898.
  • Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation. Electrochim Acta. 1983;28(7):879–889.
  • Xu D, Kwan WL, Chen K, et al. Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Appl Phys Lett. 2007;91(25):254105.
  • Xu D, Sriram V, Ozolins V, et al. In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. J Appl Phys. 2009;105(2):023521.
  • Beyerlein IJ, Zhang X, Misra A. Growth twins and deformation twins in metals. Annu Rev Mater Res. 2014;44:329–363.